当前位置: 首页 > news >正文

【目标检测】YOLOv5算法实现(九):模型预测

  本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。
  本系列文章主要以YOLOv5为例完成算法的实现,后续修改、增加相关模块即可实现其他版本的YOLO算法。

文章地址:
YOLOv5算法实现(一):算法框架概述
YOLOv5算法实现(二):模型加载
YOLOv5算法实现(三):数据集加载
YOLOv5算法实现(四):正样本匹配与损失计算
YOLOv5算法实现(五):预测结果后处理
YOLOv5算法实现(六):评价指标及实现
YOLOv5算法实现(七):模型训练
YOLOv5算法实现(八):模型验证
YOLOv5算法实现(九):模型预测

本文目录

  • 引言
  • 模型预测(predict.py)

引言

  本篇文章综合之前文章中的功能,实现模型的预测。模型预测的逻辑如图1所示。

在这里插入图片描述

图1 模型预测流程

模型预测(predict.py)

def predice():img_size = 640  # 必须是32的整数倍 [416, 512, 608]file = "yolov5s"cfg = f"cfg/models/{file}.yaml"  # 改成生成的.cfg文件weights_path = f"weights/{file}/{file}.pt"  # 改成自己训练好的权重文件json_path = "data/dataset.json"  # json标签文件img_path = "test.jpg"save_path = f"results/{file}/test_result8.jpg"assert os.path.exists(cfg), "cfg file {} dose not exist.".format(cfg)assert os.path.exists(weights_path), "weights file {} dose not exist.".format(weights_path)assert os.path.exists(json_path), "json file {} dose not exist.".format(json_path)assert os.path.exists(img_path), "image file {} dose not exist.".format(img_path)with open(json_path, 'r') as f:class_dict = json.load(f)category_index = {str(v): str(k) for k, v in class_dict.items()}input_size = (img_size, img_size)device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")device = torch.device("cpu")model = Model(cfg, ch=3, nc=3)weights_dict = torch.load(weights_path, map_location='cpu')weights_dict = weights_dict["model"] if "model" in weights_dict else weights_dictmodel.load_state_dict(weights_dict, strict=False)model.to(device)model.eval()with torch.no_grad():# initimg = torch.zeros((1, 3, img_size, img_size), device=device)model(img)img_o = cv2.imread(img_path)  # BGRassert img_o is not None, "Image Not Found " + img_pathimg = letterbox(img_o, new_shape=input_size, auto=True, color=(0, 0, 0))[0]# Convertimg = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416img = np.ascontiguousarray(img)img = torch.from_numpy(img).to(device).float()img /= 255.0  # scale (0, 255) to (0, 1)img = img.unsqueeze(0)  # add batch dimensiont1 = torch_utils.time_synchronized()pred = model(img)[0]  # only get inference resultt2 = torch_utils.time_synchronized()print("inference time: {}s".format(t2 - t1))print('model: {}'.format(file))pred = utils.non_max_suppression(pred, conf_thres=0.1, iou_thres=0.6, multi_label=True)[0]t3 = time.time()print("post-processing time: {}s".format(t3 - t2))# process detectionspred[:, :4] = utils.scale_coords(img.shape[2:], pred[:, :4], img_o.shape).round()bboxes = pred[:, :4].detach().cpu().numpy()scores = pred[:, 4].detach().cpu().numpy()classes = pred[:, 5].detach().cpu().numpy().astype(np.int) + 1pil_img = Image.fromarray(img_o[:, :, ::-1])plot_img = draw_objs(pil_img,bboxes,classes,scores,category_index=category_index,box_thresh=0.2,line_thickness=3,font='arial.ttf',font_size=30)plt.imshow(plot_img)plt.show()# 保存预测的图片结果plot_img.save(save_path)if __name__ == "__main__":predict()

相关文章:

【目标检测】YOLOv5算法实现(九):模型预测

本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。   本系列文章主要以YOLOv5为例完成算法的实现,后续修改、增加相关模…...

centos宝塔远程服务器怎么链接?

要远程连接CentOS宝塔服务器,可以按照以下步骤操作: 打开终端或远程连接工具,比如PuTTY。输入服务器的IP地址和SSH端口号(默认为22),点击连接。输入用户名和密码进行登录。 如果你已经安装了宝塔面板&…...

C语言练习day8

变种水仙花 变种水仙花_牛客题霸_牛客网 题目: 思路:我们拿到题目的第一步可以先看一看题目给的例子,1461这个数被从中间拆成了两部分:1和461,14和61,146和1,不知道看到这大家有没有觉得很熟…...

蓝凌OA-sysuicomponent-任意文件上传_exp-漏洞复现

0x01阅读须知 技术文章仅供参考,此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的…...

C#,入门教程(38)——大型工程软件中类(class)修饰词partial的使用方法

上一篇: C#,入门教程(37)——优秀程序员的修炼之道https://blog.csdn.net/beijinghorn/article/details/125011644 一、大型(工程应用)软件倚重 partial 先说说大型(工程应用)软件对源代码的文件及函数“…...

C++播放音乐:使用EGE图形库

——开胃菜,闲话篓子一大片 最近,我发现ege图形库不是个正经的图形库—— 那天,我又在打趣儿地翻代码时,无意间看到了这个: 图形库?!你哪来的音乐(Music)呢&#xff1f…...

C++中const和constexpr的区别:了解常量的不同用法

C中const和constexpr的区别 一、C中的常量概念二、const关键字的用法和特点三、constexpr关键字的用法和特点四、const和constexpr的区别对比4.1、编译时计算能力4.2、可以赋值的范围4.3、对类和对象的适用性4.4、对函数的适用性4.5、性能和效率的差异 五、使用示例六、总结 一…...

高级架构师是如何设计一个系统的?

架构师如何设计系统? 系统拆分 通过DDD领域模型,对服务进行拆分,将一个系统拆分为多个子系统,做成SpringCloud的微服务。微服务设计时要尽可能做到少扇出,多扇入,根据服务器的承载,进行客户端负…...

力扣:474. 一和零(动态规划)(01背包)

题目: 给你一个二进制字符串数组 strs 和两个整数 m 和 n 。 请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。 如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。 示例 1: 输入&#…...

【复现】Apache Solr信息泄漏漏洞_24

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一: 四.修复建议: 五. 搜索语法: 六.免责声明 一.概述 Apache Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求&#x…...

《WebKit 技术内幕》之五(4): HTML解释器和DOM 模型

4 影子(Shadow)DOM 影子 DOM 是一个新东西,主要解决了一个文档中可能需要大量交互的多个 DOM 树建立和维护各自的功能边界的问题。 4.1 什么是影子 DOM 当开发这样一个用户界面的控件——这个控件可能由一些 HTML 的标签元素…...

记录一个sql:查询商品码对应多个商品的商品码

目录 背景sql 语句总结 背景 一个项目中,商品表和商品码表是一对多的关系,但由于程序没有控制好,导致有些商品码对应有多个商品,为了修正数据,我们得把商品码对应多个商品的商品码找出来. sql 语句 goods_detail表结构…...

Linux内核--网络协议栈(三)sk_buff介绍

目录 一、引言 二、sk_buff ------>2.1、skb介绍 ------>2.2、控制字段 ------>2.3、其他字段 ------>2.4、特定功能字段 ------>2.5、管理字段 ------>2.6、内存分配 ------>2.7、内存释放 ------>2.8、克隆和拷贝 ------>2.9、队列管理…...

尝试解决githubclone失败问题

BV1qV4y1m7PB 根据这个视频 似乎是我的linux的github似乎下好了 我没有配置好 比如我的ssh-key 现在根据视频试试 首先需要跳转到ssh的文件夹&#xff1a; cd ~/.ssh 然后生成一个ssh-key&#xff1a; ssh-keygen -t rsa -C "<github资料里的邮箱>" 然后…...

VUE表单中多个el-upload上传组件共享回调函数解决方案

产品需求界面&#xff1a; 在产品配置页面表单中需要上传多个图片&#xff0c;项目中上传组件采用Element Plus 中的 el-upload&#xff0c;目前问题是每个上传组件都需要实现自己的回调&#xff0c;比如:on-change&#xff0c;采用官方推荐标准代码如下&#xff1a; <el-fo…...

Opencv4快速入门笔记

opencv4 一、数据载入显示和储存 1.Mat类 cv::Mat a(640,480,CN_8UC3); //640*480 3通道 cv::Mat a(Size(480,640),CV_8UC1); Mat m a.clone();//克隆 Mat b (a,Range(2,5),Range(3,5));//截取a中2-5行&#xff0c;3-5列 Mat b(2,2,CV_8UC3,Scalar(0,0,255));//构造时赋值…...

three.js 点按钮,相机飞行靠近观察设备

效果&#xff1a; 点击按钮或直接点击模型都可以实现运动效果 代码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"><…...

什么情况下物理服务器会运行出错?

​  物理服务器&#xff0c;也称为裸机服务器&#xff0c;一般可以提供高性能计算水平和巨大的存储容量。然而&#xff0c;它们也难免会遇到一些问题。运行出错时&#xff0c;可能会导致停机和数据丢失。在这篇文章中&#xff0c;介绍了常见的物理服务器在一些情况下显示出错…...

配置免费的SSL

1 引言 本文介绍了如何在 Linux 环境下使用免费的 Let’s Encrypt 为你的网站配置 SSL 证书的方法&#xff0c;以及如何在 Nginx 服务器中启用 SSL。对于需要在自己的网站上启用 HTTPS 的用户来说非常实用。 2 SSL 简介 SSL&#xff0c;全称为 Secure Sockets Layer&#xf…...

(2)(2.1) Andruav Android Cellular(一)

文章目录 前言 1 Andruav 是什么&#xff1f; 2 Andruav入门 3 Andruav FPV 4 Andruav GCS App​​​​​​​ 前言 Andruav 是一个基于安卓的互联系统&#xff0c;它将安卓手机作为公司计算机&#xff0c;为你的无人机和遥控车增添先进功能。 1 Andruav 是什么&#xff…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...