当前位置: 首页 > news >正文

【目标检测】YOLOv5算法实现(九):模型预测

  本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。
  本系列文章主要以YOLOv5为例完成算法的实现,后续修改、增加相关模块即可实现其他版本的YOLO算法。

文章地址:
YOLOv5算法实现(一):算法框架概述
YOLOv5算法实现(二):模型加载
YOLOv5算法实现(三):数据集加载
YOLOv5算法实现(四):正样本匹配与损失计算
YOLOv5算法实现(五):预测结果后处理
YOLOv5算法实现(六):评价指标及实现
YOLOv5算法实现(七):模型训练
YOLOv5算法实现(八):模型验证
YOLOv5算法实现(九):模型预测

本文目录

  • 引言
  • 模型预测(predict.py)

引言

  本篇文章综合之前文章中的功能,实现模型的预测。模型预测的逻辑如图1所示。

在这里插入图片描述

图1 模型预测流程

模型预测(predict.py)

def predice():img_size = 640  # 必须是32的整数倍 [416, 512, 608]file = "yolov5s"cfg = f"cfg/models/{file}.yaml"  # 改成生成的.cfg文件weights_path = f"weights/{file}/{file}.pt"  # 改成自己训练好的权重文件json_path = "data/dataset.json"  # json标签文件img_path = "test.jpg"save_path = f"results/{file}/test_result8.jpg"assert os.path.exists(cfg), "cfg file {} dose not exist.".format(cfg)assert os.path.exists(weights_path), "weights file {} dose not exist.".format(weights_path)assert os.path.exists(json_path), "json file {} dose not exist.".format(json_path)assert os.path.exists(img_path), "image file {} dose not exist.".format(img_path)with open(json_path, 'r') as f:class_dict = json.load(f)category_index = {str(v): str(k) for k, v in class_dict.items()}input_size = (img_size, img_size)device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")device = torch.device("cpu")model = Model(cfg, ch=3, nc=3)weights_dict = torch.load(weights_path, map_location='cpu')weights_dict = weights_dict["model"] if "model" in weights_dict else weights_dictmodel.load_state_dict(weights_dict, strict=False)model.to(device)model.eval()with torch.no_grad():# initimg = torch.zeros((1, 3, img_size, img_size), device=device)model(img)img_o = cv2.imread(img_path)  # BGRassert img_o is not None, "Image Not Found " + img_pathimg = letterbox(img_o, new_shape=input_size, auto=True, color=(0, 0, 0))[0]# Convertimg = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416img = np.ascontiguousarray(img)img = torch.from_numpy(img).to(device).float()img /= 255.0  # scale (0, 255) to (0, 1)img = img.unsqueeze(0)  # add batch dimensiont1 = torch_utils.time_synchronized()pred = model(img)[0]  # only get inference resultt2 = torch_utils.time_synchronized()print("inference time: {}s".format(t2 - t1))print('model: {}'.format(file))pred = utils.non_max_suppression(pred, conf_thres=0.1, iou_thres=0.6, multi_label=True)[0]t3 = time.time()print("post-processing time: {}s".format(t3 - t2))# process detectionspred[:, :4] = utils.scale_coords(img.shape[2:], pred[:, :4], img_o.shape).round()bboxes = pred[:, :4].detach().cpu().numpy()scores = pred[:, 4].detach().cpu().numpy()classes = pred[:, 5].detach().cpu().numpy().astype(np.int) + 1pil_img = Image.fromarray(img_o[:, :, ::-1])plot_img = draw_objs(pil_img,bboxes,classes,scores,category_index=category_index,box_thresh=0.2,line_thickness=3,font='arial.ttf',font_size=30)plt.imshow(plot_img)plt.show()# 保存预测的图片结果plot_img.save(save_path)if __name__ == "__main__":predict()

相关文章:

【目标检测】YOLOv5算法实现(九):模型预测

本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。   本系列文章主要以YOLOv5为例完成算法的实现,后续修改、增加相关模…...

centos宝塔远程服务器怎么链接?

要远程连接CentOS宝塔服务器,可以按照以下步骤操作: 打开终端或远程连接工具,比如PuTTY。输入服务器的IP地址和SSH端口号(默认为22),点击连接。输入用户名和密码进行登录。 如果你已经安装了宝塔面板&…...

C语言练习day8

变种水仙花 变种水仙花_牛客题霸_牛客网 题目: 思路:我们拿到题目的第一步可以先看一看题目给的例子,1461这个数被从中间拆成了两部分:1和461,14和61,146和1,不知道看到这大家有没有觉得很熟…...

蓝凌OA-sysuicomponent-任意文件上传_exp-漏洞复现

0x01阅读须知 技术文章仅供参考,此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的…...

C#,入门教程(38)——大型工程软件中类(class)修饰词partial的使用方法

上一篇: C#,入门教程(37)——优秀程序员的修炼之道https://blog.csdn.net/beijinghorn/article/details/125011644 一、大型(工程应用)软件倚重 partial 先说说大型(工程应用)软件对源代码的文件及函数“…...

C++播放音乐:使用EGE图形库

——开胃菜,闲话篓子一大片 最近,我发现ege图形库不是个正经的图形库—— 那天,我又在打趣儿地翻代码时,无意间看到了这个: 图形库?!你哪来的音乐(Music)呢&#xff1f…...

C++中const和constexpr的区别:了解常量的不同用法

C中const和constexpr的区别 一、C中的常量概念二、const关键字的用法和特点三、constexpr关键字的用法和特点四、const和constexpr的区别对比4.1、编译时计算能力4.2、可以赋值的范围4.3、对类和对象的适用性4.4、对函数的适用性4.5、性能和效率的差异 五、使用示例六、总结 一…...

高级架构师是如何设计一个系统的?

架构师如何设计系统? 系统拆分 通过DDD领域模型,对服务进行拆分,将一个系统拆分为多个子系统,做成SpringCloud的微服务。微服务设计时要尽可能做到少扇出,多扇入,根据服务器的承载,进行客户端负…...

力扣:474. 一和零(动态规划)(01背包)

题目: 给你一个二进制字符串数组 strs 和两个整数 m 和 n 。 请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。 如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。 示例 1: 输入&#…...

【复现】Apache Solr信息泄漏漏洞_24

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一: 四.修复建议: 五. 搜索语法: 六.免责声明 一.概述 Apache Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求&#x…...

《WebKit 技术内幕》之五(4): HTML解释器和DOM 模型

4 影子(Shadow)DOM 影子 DOM 是一个新东西,主要解决了一个文档中可能需要大量交互的多个 DOM 树建立和维护各自的功能边界的问题。 4.1 什么是影子 DOM 当开发这样一个用户界面的控件——这个控件可能由一些 HTML 的标签元素…...

记录一个sql:查询商品码对应多个商品的商品码

目录 背景sql 语句总结 背景 一个项目中,商品表和商品码表是一对多的关系,但由于程序没有控制好,导致有些商品码对应有多个商品,为了修正数据,我们得把商品码对应多个商品的商品码找出来. sql 语句 goods_detail表结构…...

Linux内核--网络协议栈(三)sk_buff介绍

目录 一、引言 二、sk_buff ------>2.1、skb介绍 ------>2.2、控制字段 ------>2.3、其他字段 ------>2.4、特定功能字段 ------>2.5、管理字段 ------>2.6、内存分配 ------>2.7、内存释放 ------>2.8、克隆和拷贝 ------>2.9、队列管理…...

尝试解决githubclone失败问题

BV1qV4y1m7PB 根据这个视频 似乎是我的linux的github似乎下好了 我没有配置好 比如我的ssh-key 现在根据视频试试 首先需要跳转到ssh的文件夹&#xff1a; cd ~/.ssh 然后生成一个ssh-key&#xff1a; ssh-keygen -t rsa -C "<github资料里的邮箱>" 然后…...

VUE表单中多个el-upload上传组件共享回调函数解决方案

产品需求界面&#xff1a; 在产品配置页面表单中需要上传多个图片&#xff0c;项目中上传组件采用Element Plus 中的 el-upload&#xff0c;目前问题是每个上传组件都需要实现自己的回调&#xff0c;比如:on-change&#xff0c;采用官方推荐标准代码如下&#xff1a; <el-fo…...

Opencv4快速入门笔记

opencv4 一、数据载入显示和储存 1.Mat类 cv::Mat a(640,480,CN_8UC3); //640*480 3通道 cv::Mat a(Size(480,640),CV_8UC1); Mat m a.clone();//克隆 Mat b (a,Range(2,5),Range(3,5));//截取a中2-5行&#xff0c;3-5列 Mat b(2,2,CV_8UC3,Scalar(0,0,255));//构造时赋值…...

three.js 点按钮,相机飞行靠近观察设备

效果&#xff1a; 点击按钮或直接点击模型都可以实现运动效果 代码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"><…...

什么情况下物理服务器会运行出错?

​  物理服务器&#xff0c;也称为裸机服务器&#xff0c;一般可以提供高性能计算水平和巨大的存储容量。然而&#xff0c;它们也难免会遇到一些问题。运行出错时&#xff0c;可能会导致停机和数据丢失。在这篇文章中&#xff0c;介绍了常见的物理服务器在一些情况下显示出错…...

配置免费的SSL

1 引言 本文介绍了如何在 Linux 环境下使用免费的 Let’s Encrypt 为你的网站配置 SSL 证书的方法&#xff0c;以及如何在 Nginx 服务器中启用 SSL。对于需要在自己的网站上启用 HTTPS 的用户来说非常实用。 2 SSL 简介 SSL&#xff0c;全称为 Secure Sockets Layer&#xf…...

(2)(2.1) Andruav Android Cellular(一)

文章目录 前言 1 Andruav 是什么&#xff1f; 2 Andruav入门 3 Andruav FPV 4 Andruav GCS App​​​​​​​ 前言 Andruav 是一个基于安卓的互联系统&#xff0c;它将安卓手机作为公司计算机&#xff0c;为你的无人机和遥控车增添先进功能。 1 Andruav 是什么&#xff…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...