从规则到神经网络:机器翻译技术的演化之路
文章目录
- 从规则到神经网络:机器翻译技术的演化之路
- 一、概述
- 1. 机器翻译的历史与发展
- 2. 神经机器翻译的兴起
- 3. 技术对现代社会的影响
- 二、机器翻译的核心技术
- 1. 规则基础的机器翻译(Rule-Based Machine Translation, RBMT)
- 2. 统计机器翻译(Statistical Machine Translation, SMT)
- 3. 神经机器翻译(Neural Machine Translation, NMT)
- 4. 综合考量
- 三、神经机器翻译的深入探讨
- 1. 神经网络架构
- 循环神经网络(RNN)
- Transformer模型
- 2. 训练数据与预处理
- 3. 训练过程详解
- 示例代码
- 四、模型优化与挑战
- 1. 优化技术
- 正则化
- 注意力机制
- 示例代码:实现Dropout
- 2. 挑战
- 长句子翻译
- 低资源语言翻译
- 评价标准
- 五、应用与案例分析
- 1. 实际应用
- 商业领域
- 学术领域
- 2. 成功案例
- Google翻译
- DeepL
- 3. 对社会的影响
- 六、总结
- 技术发展的深远影响
- 技术融合的前景
- 持续的挑战和机遇
- 技术伦理与社会责任
- 持续的挑战和机遇
- 技术伦理与社会责任
从规则到神经网络:机器翻译技术的演化之路
在本文中,我们深入探讨了机器翻译的历史、核心技术、特别是神经机器翻译(NMT)的发展,分析了模型的优化、挑战及其在不同领域的应用案例。同时,我们还提出了对未来机器翻译技术发展的展望和潜在的社会影响。

一、概述
机器翻译(Machine Translation, MT)是人工智能领域的一项关键技术,旨在实现不同语言之间的自动翻译。自从20世纪中叶首次提出以来,机器翻译已从简单的字面翻译演变为今天高度复杂和精准的语义翻译。这项技术的发展不仅彻底改变了全球信息交流的方式,而且对于经济、政治和文化交流产生了深远影响。
1. 机器翻译的历史与发展
机器翻译的概念最早出现在20世纪40年代,初期以规则为基础,依赖于详尽的词典和语法规则。然而,这种方法局限于规则的严格性和语言的复杂性。随着20世纪90年代统计机器翻译(Statistical Machine Translation, SMT)的兴起,机器翻译开始依赖大量双语语料库来“学习”翻译。比如,使用欧洲议会会议记录这种双语语料,机器学习不同语言间的转换规律。
2. 神经机器翻译的兴起
21世纪初,随着深度学习和神经网络的发展,机器翻译进入了一个新时代:神经机器翻译(Neural Machine Translation, NMT)。与基于规则或统计的方法不同,NMT使用深度神经网络,特别是RNN(循环神经网络)和后来的Transformer模型,以端到端的方式学习语言转换。例如,谷歌翻译在2016年引入了基于NMT的系统,显著提高了翻译质量。
3. 技术对现代社会的影响
机器翻译技术的进步对于打破语言障碍、促进全球化意义重大。它不仅为个人用户提供了方便,例如通过智能手机应用实时翻译外语,还对企业和政府进行跨国沟通提供了强大支持。机器翻译的发展还促进了其他技术的进步,如语音识别和自然语言处理,这些技术现在被广泛应用于各种智能助手和在线服务中。
总体而言,机器翻译不仅是技术上的一个重大突破,它还在文化、社会和经济等多个领域产生了深远的影响。通过不断的技术创新,机器翻译正在逐渐成为人类语言交流的一个不可或缺的部分。
二、机器翻译的核心技术

机器翻译的核心技术经历了几个重要的发展阶段,从最初的规则基础的方法到现代的基于深度学习的神经机器翻译。每种技术都有其特点和应用领域,对机器翻译的进步起到了关键作用。
1. 规则基础的机器翻译(Rule-Based Machine Translation, RBMT)
RBMT是最早的机器翻译方法,依赖于详细的语法规则和词汇数据库。它通过分析源语言的语法结构,然后根据预设规则转换为目标语言。例如,早期的机器翻译系统SYSTRAN就是基于这种技术。它在冷战时期被用于翻译俄语和英语之间的文件,虽然结果不够流畅,但在当时已经是一项重大突破。
2. 统计机器翻译(Statistical Machine Translation, SMT)
随着大数据时代的来临,统计机器翻译开始崭露头角。SMT不再依赖于硬编码的语言规则,而是通过分析大量双语文本数据,学习语言间的统计关系。例如,IBM的Candide系统是早期的SMT研究项目之一,它通过分析法语和英语的大量平行语料,开创了基于数据的机器翻译新时代。SMT的一个典型特点是“短语表”,它将文本分解为短语单位,并学习这些短语如何在不同语言间转换。
3. 神经机器翻译(Neural Machine Translation, NMT)
神经机器翻译代表了机器翻译技术的最新发展方向。NMT使用深度学习中的神经网络,特别是循环神经网络(RNN)和后来的Transformer模型,实现更加流畅和准确的翻译。以谷歌翻译为例,其采用的Transformer模型能够更好地处理长距离依赖和复杂的语言结构,显著提高了翻译的准确性和自然性。神经机器翻译在处理诸如词序、句法结构和语义理解方面展现出了显著的优势,成为当前机器翻译领域的主流技术。
4. 综合考量
每种机器翻译技术都有其优势和局限。规则基础的方法在处理特定、固定的语言结构时表现良好,但缺乏灵活性。统计机器翻译虽然能处理更多样化的文本,但在处理复杂句子和罕见词汇时存在挑战。神经机器翻译则在多方面展现了优越性,但它对训练数据的质量和量有较高要求。这些技术的发展不仅体现了人工智能领域的进步,也反映了计算能力和数据处理能力的增强。通过综合运用这些技术,机器翻译正在不断向更高的准确性和自然性迈进。
三、神经机器翻译的深入探讨

神经机器翻译(Neural Machine Translation, NMT)是利用深度学习技术进行语言翻译的前沿方法。NMT的核心在于使用神经网络,特别是循环神经网络(RNN)和Transformer模型,以端到端的方式学习和预测语言。
1. 神经网络架构
循环神经网络(RNN)
RNN是早期NMT系统的基石,特别擅长处理序列数据。例如,RNN在处理一个句子时,会逐个单词地读取并记忆上下文信息。RNN的问题在于难以处理长距离依赖,即在长句子中,前面的信息难以影响到句子后面的处理。
Transformer模型
为了克服RNN的限制,Transformer模型被引入。它通过自注意力机制(Self-Attention)来处理序列中的每个元素,从而有效地处理长距离依赖问题。Transformer模型的关键创新在于其能够同时关注输入序列中的所有部分,从而更好地理解上下文。
2. 训练数据与预处理
训练神经机器翻译模型需要大量的双语语料库。这些数据首先需要经过预处理,包括分词、归一化、去除噪声等步骤。预处理的目的是准备干净、一致的数据,以便于网络学习。
3. 训练过程详解
示例代码
以下是一个简化的NMT模型训练过程,使用PyTorch框架:
import torch
import torch.nn as nn
import torch.optim as optimclass NMTModel(nn.Module):def __init__(self, input_dim, output_dim, emb_dim, hid_dim, n_layers):super().__init__()self.embedding = nn.Embedding(input_dim, emb_dim)self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers)self.fc_out = nn.Linear(hid_dim, output_dim)def forward(self, src):embedded = self.embedding(src)outputs, (hidden, cell) = self.rnn(embedded)predictions = self.fc_out(outputs)return predictions# 示例模型参数
INPUT_DIM = 10000 # 输入语言的词汇量
OUTPUT_DIM = 10000 # 输出语言的词汇量
EMB_DIM = 256 # 嵌入层维度
HID_DIM = 512 # 隐藏层维度
N_LAYERS = 2 # RNN层数# 初始化模型
model = NMTModel(INPUT_DIM, OUTPUT_DIM, EMB_DIM, HID_DIM, N_LAYERS)# 定义优化器和损失函数
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()# 训练模型(示例,非完整代码)
def train(model, iterator, optimizer, criterion):model.train()for i, batch in enumerate(iterator):src = batch.srctrg = batch.trgoptimizer.zero_grad()output = model(src)loss = criterion(output, trg)loss.backward()optimizer.step()
此代码展示了一个简化的NMT模型结构和训练循环。实际应用中,模型会更加复杂,且需要更多的调优和评估。
四、模型优化与挑战
神经机器翻译(NMT)模型虽然在多个方面取得了显著进展,但仍然面临着诸多挑战。优化这些模型并解决这些挑战是当前研究的重点。
1. 优化技术
正则化
为防止模型过拟合,正则化技术是关键。例如,使用Dropout可以在训练过程中随机“关闭”神经元,减少模型对特定训练样本的依赖。
注意力机制
注意力机制(Attention Mechanism)是提高NMT性能的关键。通过赋予模型在翻译时对源文本的不同部分进行“关注”的能力,可以显著提高翻译的准确性和自然性。例如,Transformer模型中的自注意力机制可以帮助模型更好地理解长句子中的语境。
示例代码:实现Dropout
以下是在PyTorch中实现Dropout的示例:
import torch.nn as nnclass NMTModelWithDropout(nn.Module):def __init__(self, input_dim, output_dim, emb_dim, hid_dim, n_layers, dropout_rate):super().__init__()self.embedding = nn.Embedding(input_dim, emb_dim)self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout_rate)self.fc_out = nn.Linear(hid_dim, output_dim)self.dropout = nn.Dropout(dropout_rate)def forward(self, src):embedded = self.dropout(self.embedding(src))outputs, (hidden, cell) = self.rnn(embedded)predictions = self.fc_out(self.dropout(outputs))return predictions
在这个模型中,Dropout被应用于嵌入层和RNN层之间以及RNN层和全连接层之间,有助于减少过拟合。
2. 挑战
长句子翻译
长句子的翻译是NMT模型面临的一大挑战。随着句子长度的增加,模型保持语境和语义的能力下降。虽然Transformer模型在处理长距离依赖方面取得了进展,但对于非常长的句子,翻译质量仍然是一个问题。
低资源语言翻译
对于那些可用训练数据较少的语言,NMT模型的表现通常不佳。这是因为深度学习模型通常需要大量数据来学习有效的特征和模式。为了解决这个问题,研究人员正在探索诸如迁移学习和多语言训练等方法。
评价标准
评价机器翻译的质量是一个复杂的任务。常用的评价标准如BLEU分数,主要基于翻译结果和参考翻译之间的重叠程度,但这不一定能完全反映翻译的自然性和准确性。因此,开发更全面的评价标准是当前研究的重点之一。
五、应用与案例分析

神经机器翻译(NMT)技术的进步已经使其在多个领域得到广泛应用。从商业到学术,从日常生活到专业领域,NMT正在逐步改变我们理解和使用语言的方式。
1. 实际应用
商业领域
在商业领域,NMT技术的应用主要集中在跨语言通信和全球化内容管理。例如,多国公司使用NMT系统来翻译和本地化产品说明、市场营销材料和客户支持文档。这不仅加快了信息传递速度,还降低了语言服务的成本。
学术领域
在学术研究中,NMT使研究人员能够访问和理解其他语言的文献,促进了跨文化和跨学科的学术交流。此外,NMT还被用于语言学研究,帮助学者更好地理解不同语言间的相似性和差异性。
2. 成功案例
Google翻译
Google翻译是NMT应用的典型例子。2016年,谷歌引入了基于NMT的系统,显著提高了翻译的准确性和流畅性。例如,对于英语和法语之间的翻译,NMT系统相比于之前的统计机器翻译方法,在保持语义准确性的同时,大大增加了句子的自然流畅性。
DeepL
DeepL翻译器是另一个在NMT领域取得显著成就的例子。它以高准确性和流畅的翻译结果闻名,在某些情况下甚至超过了Google翻译。DeepL利用先进的NMT技术,特别是在处理复杂句子和特定行业术语方面展现出卓越的性能。
3. 对社会的影响
NMT的广泛应用极大地促进了全球化进程,帮助人们跨越语言障碍,更容易地获取信息和沟通。它不仅使个人用户的生活变得更加便捷,而且对于企业的国际化战略和学术研究的国际合作都起到了关键作用。
六、总结
在探讨了机器翻译的历史、核心技术、神经机器翻译的深入分析、模型优化与挑战,以及实际应用与案例后,我们可以总结出一些独特的洞见,这些洞见不仅彰显了机器翻译技术的成就和潜力,也指出了未来的发展方向。
技术发展的深远影响
神经机器翻译(NMT)的发展不仅是人工智能领域的一个重要成果,更是信息时代的一个里程碑。NMT的进步大幅提升了翻译的准确性和流畅性,这不仅改善了人与人之间的交流,也促进了跨文化理解和合作。机器翻译的发展有助于打破语言障碍,为全球化的进程提供了强大动力。
技术融合的前景
NMT的成功归功于多个技术领域的融合,包括深度学习、自然语言处理、大数据等。这种跨学科的融合不仅为机器翻译带来了突破,也为其他技术领域提供了灵感。例如,NMT中的自注意力机制已经被广泛应用于语音识别、图像处理等其他人工智能应用中。
持续的挑战和机遇
虽然NMT取得了显著成就,但仍面临诸如处理低资源语言、提高长句子翻译质量等挑战。这些挑战不仅推动了技术的不断进步,也为研究人员提供了新的研究方向。同时,随着计算能力的提升和数据量的增加,我们可以预期机器翻译将实现更大的飞跃。
技术伦理与社会责任
机器翻译带来了突破,也为其他技术领域提供了灵感。例如,NMT中的自注意力机制已经被广泛应用于语音识别、图像处理等其他人工智能应用中。
持续的挑战和机遇
虽然NMT取得了显著成就,但仍面临诸如处理低资源语言、提高长句子翻译质量等挑战。这些挑战不仅推动了技术的不断进步,也为研究人员提供了新的研究方向。同时,随着计算能力的提升和数据量的增加,我们可以预期机器翻译将实现更大的飞跃。
技术伦理与社会责任
随着机器翻译技术的深入应用,技术伦理和社会责任问题也日益凸显。例如,如何确保翻译结果的公正性和无偏见,以及如何处理隐私和版权等问题,都是必须认真考虑的问题。这不仅是技术挑战,也是社会和法律挑战。
相关文章:
从规则到神经网络:机器翻译技术的演化之路
文章目录 从规则到神经网络:机器翻译技术的演化之路一、概述1. 机器翻译的历史与发展2. 神经机器翻译的兴起3. 技术对现代社会的影响 二、机器翻译的核心技术1. 规则基础的机器翻译(Rule-Based Machine Translation, RBMT)2. 统计机器翻译&am…...
python 面经
关于自身特点 1. 介绍下自己,讲一下在公司做的项目 2. 说一下熟悉的框架,大致讲下其特点 python 基础 1.可变与不可变类型区别 2.请解释join函数 3.请解释*args和**kwargs的含义,为什么使用* args,** kwargs? 4.解释…...
Ubuntu (Linux) 下创建软链接(即符号链接,相当于windows下的快捷方式)方法
Ubuntu (Linux) 下创建软链接(即符号链接,相当于windows下的快捷方式)方法 使用创建软链接的命令 #命令格式如下。注意:请使用绝对路径,否则链接可能失效 ln -s <源文件或目录的绝对路径> <符号链接文件&am…...
LeetCode.2765. 最长交替子数组
题目 2765. 最长交替子数组 分析 为了得到数组 nums 中的最长交替子数组的长度,需要分别计算以每个下标结尾的最长交替子数组的长度。为了方便处理,计算过程中需要考虑长度等于 1 的最长交替子数组,再返回结果时判断最长交替子数组的长度…...
Springboot日志框架logback与log4j2
目录 Springboot日志使用 Logback日志 日志格式 自定义日志格式 日志文件输出 Springboot启用log4j2日志框架 Springboot日志使用 Springboot底层是使用slf4jlogback的方式进行日志记录 Logback日志 trace:级别最低 debug:调试级别的,…...
浪花 - 用户信息展示+更新
1. 用户登录获取登录凭证 已登录的用户才能获取个人信息发送 Aixos 请求登录 const user ref();onMounted(async () > {const res await myAxios.get(/user/current);if (res.code 0) {console.log("获取用户信息成功");user.value res.data;} else {consol…...
xxe漏洞之scms靶场漏洞
xxe-scms 代码审核 (1)全局搜索simplexml_load_string simplexml_load_string--将XML字符串解释为对象 (2)查看源代码 ID1 $GLOBALS[HTTP_RAW_POST_DATA]就相当于file_get_contents("php://input"); 因此这里就存…...
Unity3d C#实现三维场景中图标根据相机距离动态缩放功能
前言 如题的需求,其实可以通过使用UI替代场景中的图标来实现,不过这样UI的处理稍微麻烦,而且需要在图标上添加粒子特效使用SpriteRender更方便快捷。这里就根据相机离图标的位置来计算图标的缩放大小即可。这样基本保持了图标的大小…...
Linux网络编程(二-套接字)
目录 一、背景知识 1.1 端口号 1.2 网络字节序 1.3 地址转换函数 二、Socket简介 三、套接字相关的函数 3.1 socket() 3.2 bind() 3.3 connect() 3.4 listen() 3.5 accept() 3.6 read()/recv()/recvfrom() 3.7 send()/sendto() 3.8 close() 四、UPD客服/服务端实…...
【DeepLearning-1】 注意力机制(Attention Mechanism)
1.1注意力机制的基本原理: 计算注意力权重: 注意力权重是通过计算输入数据中各个部分之间的相关性来得到的。这些权重表示在给定上下文下,数据的某个部分相对于其他部分的重要性。 加权求和: 使用这些注意力权重对输入数据进行加权…...
c++:string相关的oj题(415. 字符串相加、125. 验证回文串、541. 反转字符串 II、557. 反转字符串中的单词 III)
文章目录 1. 415. 字符串相加题目详情代码1思路1代码2思路2 2. 125. 验证回文串题目详情代码1(按照要求修改后放到新string里)思路1代码2(利用双指针/索引)思路2 3. 541. 反转字符串 II题目详情代码1思路1 4. 557. 反转字符串中的单词 III题目详情代码1&…...
HuoCMS|免费开源可商用CMS建站系统HuoCMS 2.0下载(thinkphp内核)
HuoCMS是一套基于ThinkPhp6.0Vue 开发的一套HuoCMS建站系统。 HuoCMS是一套内容管理系统同时也是一套企业官网建设系统,能够帮过用户快速搭建自己的网站。可以满足企业站,外贸站,个人博客等一系列的建站需求。HuoCMS的优势: 可以使用统一后台…...
VsCode + CMake构建项目 C/C++连接Mysql数据库 | 数据库增删改查C++封装 | 信息管理系统通用代码 ---- 课程笔记
这个是B站Up主:程序员程子青的视频 C封装Mysql增删改查操作_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1m24y1a79o/?p6&spm_id_frompageDriver&vd_sourcea934d7fc6f47698a29dac90a922ba5a3安装mysql:mysql 下载和安装和修改MYSQL8.0 数据库存储…...
HackTheBox - Medium - Linux - Ransom
Ransom 外部信息搜集 端口扫描 循例nmap Web枚举 /api/login 它似乎受nosql注入影响,我们能够登录成功 把返回的cookie丢到cookie editor,回到主页 zip是加密的 Foothold 我们可以得知加密类型是ZipCrypto 谷歌能够找到这篇文章,它将告诉我…...
柠檬微趣面试准备
简单介绍一下spring原理 Spring框架是一个开源的Java应用程序框架,它提供了广泛的基础设施支持,帮助开发者构建Java应用程序。Spring的设计原则包括依赖注入(DI)和面向切面编程(AOP)等,以促使代…...
uniapp嵌套webview,无法返回上一级?
uniapp嵌套webview,如何解决回退问题? 文章目录 uniapp嵌套webview,如何解决回退问题?遇到问题解决方式方式一方式二 场景: 进入首页,自动跳转第三方应用 遇到问题 在设备上运行时,无法回退上…...
【优先级队列 之 堆的实现】
文章目录 前言优先级队列 PriorityQueue优先队列的模拟实现 堆堆的储存方式堆的创建建堆的时间复杂度堆的插入与删除 总结 前言 优先级队列 PriorityQueue 概念:对列是先进先出的的数据结构,但有些情况,数据可能带有优先级,一般出…...
Vue中$watch()方法和watch属性的区别
vue中$watch()和watch属性都是监听值的变化的,是同一个作用,但是有两个不同写法。 用法一: //注意:这种方法是监听不到对象的变化的。 this.$watch((newVal,oldVal)>{ }) 用法二: watch:{xxx:(newVal,oldVal)>…...
openssl3.2 - 官方demo学习 - test - certs - 001 - Primary root: root-cert
文章目录 openssl3.2 - 官方demo学习 - test - certs - 001 - Primary root: root-cert概述笔记备注END openssl3.2 - 官方demo学习 - test - certs - 001 - Primary root: root-cert 概述 实验前置条件为 openssl3.2 - linux脚本(.sh)调用openssl命令行参数的简单确认方法 …...
小程序商城能不能自己开发?
在数字化时代,小程序商城已经成为商家拓展销售渠道、提升品牌影响力的重要工具。那么,商家能否自己动手开发小程序商城呢?答案是肯定的。接下来,以乔拓云为例,为大家详细介绍如何自己搭建小程序商城。 首先,…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
