当前位置: 首页 > news >正文

多维时序 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测

多维时序 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测

目录

    • 多维时序 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.main.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023a及以上。
CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。
LSTM神经元个数:LSTM是一种适用于序列数据的循环神经网络,其神经元个数决定了模型的复杂性和记忆能力。较多的LSTM神经元可以提高模型的学习能力,但可能导致过拟合。
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信回复Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

多维时序 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测

多维时序 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测 目录 多维时序 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测效果一览基本介绍程序设计参考资料 效果…...

软件工程实验报告(完整)

博主介绍:✌全网粉丝喜爱、前后端领域优质创作者、本质互联网精神、坚持优质作品共享、掘金/腾讯云/阿里云等平台优质作者、擅长前后端项目开发和毕业项目实战✌有需要可以联系作者我哦! 🍅附上相关C语言版源码讲解🍅 &#x1f44…...

Java零基础学习20:集合的练习

编写博客目的:本系列博客均根据B站黑马程序员系列视频学习和编写目的在于记录自己的学习点滴,方便后续回忆和查找相关知识点,不足之处恳请各位有缘的朋友指正。 一、查找id对应的集合索引 package www.itheima;import java.util.ArrayList;…...

【latex】在Overleaf的IEEE会议模板中,快速插入参考文献

【LaTeX】在Overleaf的IEEE会议模板中,快速插入参考文献 写在最前面第一步:在文献检索网站导出引用文献的bib文件第二步:编辑overleaf模版方法二:EduBirdie生成参考文献(补充)使用LaTeX在Overleaf的IEEE会议…...

java反射之Field用法(获取对象的字段名和属性值)

一、概述 Field是一个类,位于java.lang.reflect包下。在Java反射中Field类描述的是类的属性信息,功能包括: 获取当前对象的成员变量的类型 对成员变量重新设值 二、如何获取Field类对象 getField(String name): 获取类特定的方法&#xff0c…...

Java Web(三)--CSS

介绍 为什么需要: 在没有 CSS 之前,想要修改 HTML 元素的样式需要为每个 HTML 元素单独定义样式属性,费心费力;CSS 可以让 html 元素(内容) 样式(CSS)分离,提高web 开发的工作效率(针对前端开发),从而…...

天津大数据培训班推荐,数据分析过程的常见错误

大数据”是近年来IT行业的热词,目前已经广泛应用在各个行业。大数据,又称海量信息,特点是数据量大、种类多、实时性强、数据蕴藏的价值大。大数据是对大量、动态、能持续的数据,通过运用分析、挖掘和整理,实现数据信息…...

【笔记】Helm-3 主题-17 弃用的Kubernetes API

弃用的Kubernetes API Kubernetes是一个API驱动系统,且API会随着时间的推移而变化,以反映对问题理解的不断推移。这是系统及API的普遍做法。API推移的一个重要部分是良好的弃用策略和通知用户更改API是如何实现的。换句话说,您的API使用者需要…...

麒麟系统—— openKylin 安装 java

麒麟系统—— openKylin 安装 java JDK 一、准备工作1. 确保麒麟系统 openKylin 已经安装完毕。2. 了解 java JDK 的版本信息,以便下载合适的安装包。 二、安装 java JDK3. 将下载好的 java JDK 安装包解压到指定目录。4. 配置环境5. 验证安装结果 本文将分享如何在…...

HTML学习笔记——07:其他嵌入技术

除了将图像、视频和音频嵌入到网页上&#xff0c;还能让你在网页中嵌入各种内容类型的元素&#xff1a;<iframe>, <embed> 和 <object> 元素。 <iframe>用于嵌入其他网页&#xff0c;另外两个元素则允许你嵌入 PDF&#xff0c;SVG&#xff0c;甚至 Fl…...

【UE】在控件蓝图中通过时间轴控制材质参数变化

效果 步骤 1. 新建一个控件蓝图和一个材质 2. 打开材质&#xff0c;设置材质域为用户界面&#xff0c;混合模式设置为“半透明” 在材质图表中添加两个参数来控制材质的颜色和不透明度 3. 对材质创建材质实例 4. 打开控件蓝图&#xff0c;在画布面板中添加一个图像控件 将刚…...

linux C语言socket函数send

在Linux中&#xff0c;使用C语言进行网络编程时&#xff0c;send函数是用于发送数据到已连接的套接字的重要函数之一。它通常用于TCP连接&#xff0c;但也可以用于UDP&#xff08;尽管对于UDP&#xff0c;通常更推荐使用sendto&#xff0c;因为它允许你指定目标地址和端口&…...

Django(八)

1. 管理员操作 1.1 添加 from django.shortcuts import render, redirectfrom app01 import models from app01.utils.pagination import Paginationfrom django import forms from django.core.exceptions import ValidationError from app01.utils.bootstrap import BootStr…...

上海计算机学会12月月赛 丙组题解

上海计算机学会 12 月月赛 丙组题解涉及知识点&#xff1a;数学、字符串、模拟、裴蜀定理、宽度优先搜索、动态规划 比赛链接&#xff1a;https://iai.sh.cn/contest/58 第一题&#xff1a;T1数砖数 标签&#xff1a;数学题意&#xff1a;给定一种 2 2 2x 2 2 2的瓷砖&#…...

nextjs中beforePopState使用

在某些情况下&#xff0c;希望监听popstate并在路由器对其进行操作之前执行某些操作。可以使用beforePopState。 在Next.js中&#xff0c;beforePopState是一个可选的生命周期函数&#xff0c;用于在浏览器的历史记录发生更改之前执行一些操作。具体来说&#xff0c;beforePopS…...

【并发编程】活锁

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;并发编程 ⛺️稳重求进&#xff0c;晒太阳 活锁 定义&#xff1a;活锁出现在两个线程互相改变对象的结束条件&#xff0c;最后谁也无法结束 代码示例 public class TestLiveLock {stati…...

CSMM和CMMI之间有什么区别?

CSMM&#xff08;软件能力成熟度评估&#xff09;和CMMI&#xff08;能力成熟度模型集成&#xff09;都是软件行业中用于评估和提高企业软件开发过程成熟度的模型。它们之间的主要区别在于起源、定位、适应范围和具体内容。 1. 起源与定位&#xff1a; - CMMI是由美国卡耐基…...

企业面临的典型网络安全风险及其防范策略

网络安全威胁是一种技术风险&#xff0c;会削弱企业网络的防御能力&#xff0c;危及专有数据、关键应用程序和整个IT基础设施。由于企业面临着广泛的威胁&#xff0c;因此通过监控和缓解最关键的威胁和漏洞。网络安全问题有七大类&#xff0c;包括多种威胁&#xff0c;以及团队…...

JavaScript进阶:WebAPIs重点知识整理1

目录 1 DOM修改元素内容 2 DOM修改元素常见属性 3 修改元素样式属性 3.1 通过style修改元素样式 3.2 通过类名className修改元素样式 3.3 通过classList修改元素样式 4 操作表单元素属性 5 自定义属性 6 定时器 7 事件监听 7.1 点击事件 click 7.2 鼠mouseenter和移…...

【Nginx】使用自生成证书配置nginx代理https

使用Nginx代理HTTPS请求并使用自签名证书&#xff0c;可以按照以下步骤进行配置&#xff1a; 生成自签名证书&#xff1a; 打开终端或命令提示符&#xff0c;并导航到Nginx配置文件所在的目录。运行以下命令生成自签名证书和私钥&#xff1a; openssl req -x509 -nodes -days 3…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题&#xff0c;其核心在于如何在有限容量的背包中选择物品&#xff0c;使得总价值最大化。根据物品选择规则的不同&#xff0c;主要分为两类&#xff1a; 01 背包&#xff1a;每件物品最多选 1 次&#xff08;选或不选&#…...

GB/T 43887-2024 核级柔性石墨板材检测

核级柔性石墨板材是指以可膨胀石墨为原料、未经改性和增强、用于核工业的核级柔性石墨板材。 GB/T 43887-2024核级柔性石墨板材检测检测指标&#xff1a; 测试项目 测试标准 外观 GB/T 43887 尺寸偏差 GB/T 43887 化学成分 GB/T 43887 密度偏差 GB/T 43887 拉伸强度…...