VC++中使用OpenCV进行人脸检测
VC++中使用OpenCV进行人脸检测
对于上面的图像,如何使用OpenCV进行人脸检测呢?
使用OpenCV进行人脸检测十分简单,OpenCV官网给了一个Python人脸检测的示例程序,
objectDetection.py
代码如下:
from __future__ import print_function
import cv2 as cv
import argparsedef detectAndDisplay(frame):frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)frame_gray = cv.equalizeHist(frame_gray)#-- Detect facesfaces = face_cascade.detectMultiScale(frame_gray)for (x,y,w,h) in faces:center = (x + w//2, y + h//2)frame = cv.ellipse(frame, center, (w//2, h//2), 0, 0, 360, (255, 0, 255), 4)faceROI = frame_gray[y:y+h,x:x+w]#-- In each face, detect eyeseyes = eyes_cascade.detectMultiScale(faceROI)for (x2,y2,w2,h2) in eyes:eye_center = (x + x2 + w2//2, y + y2 + h2//2)radius = int(round((w2 + h2)*0.25))frame = cv.circle(frame, eye_center, radius, (255, 0, 0 ), 4)cv.imshow('Capture - Face detection', frame)parser = argparse.ArgumentParser(description='Code for Cascade Classifier tutorial.')
parser.add_argument('--face_cascade', help='Path to face cascade.', default='data/haarcascades/haarcascade_frontalface_alt.xml')
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.', default='data/haarcascades/haarcascade_eye_tree_eyeglasses.xml')
parser.add_argument('--camera', help='Camera divide number.', type=int, default=0)
args = parser.parse_args()face_cascade_name = args.face_cascade
eyes_cascade_name = args.eyes_cascadeface_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()#-- 1. Load the cascades
if not face_cascade.load(cv.samples.findFile(face_cascade_name)):print('--(!)Error loading face cascade')exit(0)
if not eyes_cascade.load(cv.samples.findFile(eyes_cascade_name)):print('--(!)Error loading eyes cascade')exit(0)camera_device = args.camera
#-- 2. Read the video stream
cap = cv.VideoCapture(camera_device)
if not cap.isOpened:print('--(!)Error opening video capture')exit(0)while True:ret, frame = cap.read()if frame is None:print('--(!) No captured frame -- Break!')breakdetectAndDisplay(frame)if cv.waitKey(10) == 27:break
所在目录为D:\env_build\opencv4.9.0\opencv\sources\samples\python\tutorial_code\objectDetection\cascade_classifier\objectDetection.py
人脸识别的背景
人脸识别可以用在身份认证,门禁等场合中,可以通过训练大量的人脸数据获取人脸的特征。但是实际场景可以比较复杂,由于灯光、视角、视距、摄像头抖动以及数字噪声的变化,图像细节变得不稳定;还有戴了口罩、帽子之后对于人脸的检测就变得更麻烦了。Haar 特征是一种用于实现实时人脸跟踪的特征。每一个 Haar 特征都描述了相邻图像区域的对比模式。例如,边,顶点和细线都能生成具有判别性的特征。
haar级联数据获取
在 sources 的一个文件夹 data/haarcascades。该文件夹包含了所有 OpenCV 的人脸检测的 XML 文件,这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。如下图所示:
- 人脸检测器(默认):haarcascade_frontalface_default.xml
- 人脸检测器(快速 Harr):haarcascade_frontalface_alt2.xml
- 人脸检测器(侧视):haarcascade_profileface.xml
- 眼部检测器(左眼):haarcascade_lefteye_2splits.xml
- 眼部检测器(右眼):haarcascade_righteye_2splits.xml
- 身体检测器:haarcascade_fullbody.xml
- 上半身检测器:haarcascade_upperbody.xml
其中,本文中我们使用默认的人脸检测器xml配置文件haarcascade_frontalface_default.xml
,可以从https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours/blob/main/Resources/haarcascade_frontalface_default.xml处下载
资源图片地址
人脸资源图片地址为:https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours/blob/main/Resources/test.png
C++人脸检测示例代码
C++示例代码如下:
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/objdetect.hpp>
#include <iostream>using namespace cv;
using namespace std;/// Images 人脸检测 //int main()
{string path = "Resources/test.png";//string path = "Resources/multiFaces.jpg";Mat img = imread(path);CascadeClassifier faceCascade; // 级联分类器faceCascade.load("Resources/haarcascade_frontalface_default.xml"); // 加载训练好的haar人脸正脸xml配置文件if (faceCascade.empty()) {cout << "XML file not loaded" << endl;}vector<Rect> faces; // 人脸的矩形数组faceCascade.detectMultiScale(img, faces, 1.1, 10); // 检测输入图像中不同大小的对象,检测到的对象返回矩形列表形式faces// 针对每个检测到的人脸矩形,在对应位置上绘制矩形区域for (int i = 0; i < faces.size(); i++){rectangle(img, faces[i].tl(), faces[i].br(), Scalar(255, 0, 255), 3); // 在原图上绘制人脸矩形区域,颜色为粉色,线条厚度为3像素}imshow("Image", img);waitKey(0);return 0;
}
运行结果如下:
参考资料
- 人脸识别-Haar级联
- 人脸识别-多张人脸检测
- LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision
- murtazahassan/Learn-OpenCV-cpp-in-4-Hours
- LEARN OPENCV in 3 HOURS with Python | Including 3xProjects | Computer Vision
- Learn-OpenCV-in-3-hours
- OpenCV官网
- OpenCV-Get Started
- OpenCV Github仓库源代码
- OpenCV tutorial
相关文章:

VC++中使用OpenCV进行人脸检测
VC中使用OpenCV进行人脸检测 对于上面的图像,如何使用OpenCV进行人脸检测呢? 使用OpenCV进行人脸检测十分简单,OpenCV官网给了一个Python人脸检测的示例程序, objectDetection.py代码如下: from __future__ import p…...
11Docker数据持久化
Docker数据持久化 容器中数据持久化主要有两种方式: 数据卷(Data Volumes)数据卷容器(Data Volumes Dontainers) 数据卷 数据卷是一个可供一个或多个容器使用的特殊目录,可以绕过UFS(Unix F…...

RK3588平台开发系列讲解(视频篇)RKMedia框架
文章目录 一、 RKMedia框架介绍二、 RKMedia框架API三、 视频处理流程四、venc 测试案例沉淀、分享、成长,让自己和他人都能有所收获!😄 📢RKMedia是RK提供的一种多媒体处理方案,可实现音视频捕获、音视频输出、音视频编解码等功能。 一、 RKMedia框架介绍 功能: VI(输…...

Vue3 Teleport 将组件传送到外层DOM位置
✨ 专栏介绍 在当今Web开发领域中,构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架,正是为了满足这些需求而诞生。它采用了MVVM架构模式,并通过数据驱动和组件化的方式,使…...

【学网攻】 第(5)节 -- Cisco VTP的使用
文章目录 【学网攻】 第(1)节 -- 认识网络【学网攻】 第(2)节 -- 交换机认识及使用【学网攻】 第(3)节 -- 交换机配置聚合端口【学网攻】 第(4)节 -- 交换机划分Vlan 前言 网络已经成为了我们生活中不可或缺的一部分,它连接了世界各地的人们,让信息和资…...

uniapp复选框 实现排他选项
选择了排他选项之后 复选框其他选项不可以选择 <view class"reportData" v-for"(val, index) in obj" :key"index"> <view v-if"val.type 3" ><u-checkbox-group v-model"optionValue" placement"colu…...
openssl3.2/test/certs - 004 - cross root and root cross cert
文章目录 openssl3.2/test/certs - 004 - cross root and root cross cert概述笔记END openssl3.2/test/certs - 004 - cross root and root cross cert 概述 索引贴 openssl3.2 - 官方demo学习 - test - certs 笔记 // \file my_openssl_linux_log_doc_004.txt // openssl…...

图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解 文章目录 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解前言EfficientNet_V2讲解自适应正则化的渐进学习(Progressive Learning with adaptive Regul…...

05.Elasticsearch应用(五)
Elasticsearch应用(五) 1.目标 咱们这一章主要学习Mapping(映射) 2.介绍 Mapping是对索引库中文档的约束,类似于数据表结构,作用如下: 定义索引中的字段的名称定义字段的数据类型ÿ…...
npm更换镜像
大家好!今天给大家分享的知识是如何更换npm镜像 前言 有时候在加载npm时有时会很慢,那是由于node安装插件是从国外服务器下载,受网络影响大,速度慢且可能出现异常,这时候就需要更换镜像,使插件的安装快捷&…...
野指针(C语言)
野指针 //概念:野指针就是指针指向的位置是不可知的(随机的,不正确的 //,没有明确限制的,空间还属于操作系统而不属于程序的) //野指针成因: //1.指针未初始化 #include <stdio.h> int main() { int* p;//局部变量指针未初始化,默认为随机值 //此时p指向的空间不…...

动物姿态识别(数据集+代码)
动物姿态识别是指利用计算机视觉和深度学习技术来识别动物的姿态,即确定动物身体的姿态、方向和位置等信息。这种技术可应用于动物行为研究、动物健康监测、智能养殖等领域。 动物姿态识别的关键技术包括图像处理、特征提取和分类器设计。首先,需要对动…...

JSON-handle工具安装及使用
目录 介绍下载安装简单操作 介绍 JSON-Handle 是一款非常好用的用于操作json的浏览器插件,对于开发人员和测试人员来说是一款很好用的工具,如果你还没有用过,请赶紧下载安装吧,下面是安装过程和具体使用。 下载安装 点击下载JSON…...

kali安装LAMP和DVWA
LANMP简介 LANMP是指一组通常用来搭建动态网站或者服务器的开源软件,本身都是各自独立的程序,但是因为常被放在一起使用,拥有了越来越高的兼容度,共同组成了一个强大的Web应用程序平台。 L:指Linux,一类Unix计算机操作…...

上门服务小程序|预约上门服务系统开发有哪些功能?
在现代快节奏的生活中,压力和疲劳常常困扰着我们。为了缓解这种状况,越来越多的人选择去按摩店进行放松。然而,繁忙的工作和家庭责任往往让我们无法抽出时间去按摩店。在这种情况下,上门按摩服务应运而生。而随着科技的发展&#…...
uniapp vue3版本引用 jsencrypt加密库报错:“default“ is not exported by……
个人产生这个异常的原因:将历史项目(vue2)的jsencrypt文件复制到新项目(vue3)里直接引用报错。存在兼容问题,需要重新安装vue3版本的jsencrypt 安装依赖 npm install jsencrypt页面引入 import { JSEncry…...

【WPF.NET开发】WPF中的双向功能
本文内容 FlowDirectionFlowDocumentSpan 元素非文本元素的 FlowDirection数字替换 与其他任何开发平台不同,WPF 具有许多支持双向内容快速开发的功能,例如,同一文档中混合了从左到右和从右到左的数据。 同时,WPF 也为需要双向功…...

Pytest 测试框架与Allure 测试报告——Allure2测试报告-L3
目录: allure2报告中添加附件-图片 Allure2报告中添加附件Allure2报告中添加附件(图片)应用场景Allure2报告中添加附件(图片)-Python代码示例:allure2报告中添加附件-日志 Allure2报告中添加附件ÿ…...

【机器学习300问】16、逻辑回归模型实现分类的原理?
在上一篇文章中,我初步介绍了什么是逻辑回归模型,从它能解决什么问题开始介绍,并讲到了它长什么样子的。如果有需要的小伙伴可以回顾一下,链接我放在下面啦: 【机器学习300问】15、什么是…...
OPC【4】:物理包
概述 OPC遵循zip标准,因此可以使用python标准库zipfile对docx格式的物理文件进行读写操作。在OPC中,物理包与抽象包是一对相对的概念,后续可以看到抽象包内的内容是将物理包内的信息进行编排形成地。简单点理解,物理包的作用在于…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...