当前位置: 首页 > news >正文

二叉树的最大深度[简单]

在这里插入图片描述

优质博文:IT-BLOG-CN

一、题目

给定一个二叉树root,返回其最大深度。

二叉树的最大深度是指从根节点到最远叶子节点的最长路径上的节点数。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:3

示例 2:
输入:root = [1,null,2]
输出:2

树中节点的数量在[0, 104]区间内。
-100 <= Node.val <= 100

二、代码

【1】深度优先搜索: 如果我们知道了左子树和右子树的最大深度lr,那么该二叉树的最大深度即为max(l,r)+1。而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在O(1)时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int maxDepth(TreeNode root) {// 递归计算数的深度,确定递归的推出条件if (root == null) {return 0;} else {int leftHight = maxDepth(root.left);int rightHight = maxDepth(root.right);return Math.max(leftHight,rightHight) + 1;}}
}

复杂度分析:
1、时间复杂度: O(n)其中n为二叉树节点的个数。每个节点在递归中只被遍历一次。
2、空间复杂度: O(height)其中height表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。

【2】广度优先搜索: 我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是当前层的所有节点。每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量ans来维护拓展的次数,该二叉树的最大深度即为ans

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int maxDepth(TreeNode root) {if (root == null) {return 0;}Queue<TreeNode> queue = new LinkedList<TreeNode>();// 先存放root节点queue.offer(root);// 总长度int maxLen = 0;// 开启循环,并确定退出循环的条件while (!queue.isEmpty()) {// 获取当前队列的长度,确定该层遍历的次数int size = queue.size();// 我们需要遍历当前层的所有 treeNode// 确定循环条件,并确定退出条件while (size > 0) {TreeNode treeNode = queue.poll();if (treeNode.left != null) {// 注意:添加的时左节点,而不是当前节点queue.offer(treeNode.left);}if (treeNode.right != null) {queue.offer(treeNode.right);}--size;}++maxLen;}return maxLen;}
}

复杂度分析:
1、时间复杂度: O(n)其中n为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。
2、空间复杂度: 此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到O(n)

相关文章:

二叉树的最大深度[简单]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给定一个二叉树root&#xff0c;返回其最大深度。 二叉树的最大深度是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3 示例 2&#xff1a…...

[Redis]不同系统间安装redis服务器

日常服务器端开发&#xff0c;消息队列等需求&#xff0c;免不了用到redis&#xff0c;搭建一个redis服务器&#xff0c;方便开发和测试&#xff0c;我们从以下三类系统来说明下&#xff1a; 安装 Redis 服务器的过程因操作系统而异。以下是在常见的 Linux 发行版&#xff08;…...

Unity之动画和角色控制

目录 &#x1f4d5; 一、动画 1.创建最简单的动画 2.动画控制器 &#x1f4d5;二、把动画和角色控制相结合 &#x1f4d5;三、实现实例 3.1 鼠标控制角色视角旋转 3.2 拖尾效果 &#x1f4d5;四、混合动画 最近学到动画了&#xff0c;顺便把之前创建的地形&#xff0…...

C语言库函数实现字符串转大小写

目录 引言 代码 引言 处理字符串时&#xff0c;除了将字符串中的所有大写字母转换为小写字母外&#xff0c;我们还可以利用其他相关函数进行更丰富的文本操作。本文将以一段使用isupper()、tolower()函数实现字符串全转小写的C语言程序为例&#xff0c;详细介绍这两个函数以及…...

hcip----ospf

一&#xff1a;动态路由协议 IGP 协议---RIP OSPF ISIS EIGRP EGP--EGP ---BGP 三个角度的评判一款动态路由协议的优劣 RIP --request response 1.选路--选路依据不好&#xff0c;可能出现环路 2.收敛速度--计时器 3.占用资源-- RIPV1 RIPV2 RIPNG--ipv6 OSPFV1 OSPFV…...

vue中如何写过滤器

全局注册 (可以在main.js中进行全局注册 vue.fifler(test’&#xff0c;function(v){return v0? ‘终止’&#xff1a;v1?进行中:异常 })在组件页面使用 <view>{{state|test}}</view> <script> export default {data(){return {state: 1// state 1 进行中…...

c语言-文件的读写操作(下)

文章目录 前言一、文件的随机读写1.1 fseek()1.2 ftell()1.3 rewind() 总结 前言 本篇文章介绍c语言中文件的随机读写 一、文件的随机读写 1.1 fseek() fseek()函数的作用是根据文件指针的位置和偏移量定位文件指针 int fseek ( FILE * stream, long int offset, int origi…...

android学习笔记----SQLite数据库

用SQLite语句执行&#xff1a; 首先看到界面&#xff1a; 代码如下&#xff1a; MainActivity.java import android.support.v7.app.AppCompatActivity; import android.os.Bundle; import android.text.TextUtils; import android.view.View; import android.widget.EditTe…...

开发知识点-Flutter移动应用开发

支持 安卓 IOS Android 鸿蒙 第一章dart基础章节介绍 移动电商——Flutter-广告Banner组件制作 移动电商——Flutter实战课程介绍 Flutter实例——路由跳转的动画效果...

视频尺寸魔方:分层遮掩3D扩散模型在视频尺寸延展的应用

▐ 摘要 视频延展(Video Outpainting)是对视频的边界进行扩展的任务。与图像延展不同&#xff0c;视频延展需要考虑到填充区域的时序一致性&#xff0c;这使得问题更具挑战性。在本文中&#xff0c;我们介绍了一个新颖的基于扩散模型的视频尺寸延展方法——分层遮掩3D扩散模型(…...

openssl3.2/test/certs - 061 - other@good.org not permitted by CA1

文章目录 openssl3.2/test/certs - 061 - othergood.org not permitted by CA1概述笔记END openssl3.2/test/certs - 061 - othergood.org not permitted by CA1 概述 openssl3.2 - 官方demo学习 - test - certs 笔记 /*! * \file D:\my_dev\my_local_git_prj\study\openSS…...

如何实现无公网ip远程访问本地websocket服务端【内网穿透】

文章目录 1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功,暴露端口默认99995. 创建隧道映射内网端口6. 查看状态->在线隧道,复制所创建隧道的公网地址加端口号7. 以…...

pip清华源怎么换回来

怎么临时使用清华源 pip install scrapy -i https://pypi.Python.org/simple/怎么永久换源 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple修改清华源后怎么换回来 删掉/home/XXX/.config/pip/pip.conf...

[Go]认识Beego框架

对比Gin的简洁&#xff0c;自己之前基于Gin撸了一个架子&#xff0c;确实比beego目录看着舒服多了&#xff0c;不过最近接触到beego的项目&#xff0c;beego的bee工具使用还是很方便&#xff0c;来简单梳理下细节&#xff1b; Beego是一个开源的Go语言Web应用框架&#xff0c;…...

JWT登录

JWT JSON Web Token&#xff08;JSON Web令牌&#xff09; 是一个开放标准(rfc7519)&#xff0c;它定义了一种紧凑的、自包含的方式&#xff0c;用于在各方之间以JSON对象安全地传输信息。此信息可以验证和信任&#xff0c;因为它是数字签名的。jwt可以使用秘密〈使用HNAC算法…...

MySQL和Redis的事务有什么异同?

MySQL和Redis是两种不同类型的数据库管理系统&#xff0c;它们在事务处理方面有一些重要的异同点。 MySQL事务&#xff1a; ACID属性&#xff1a; MySQL是一个关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;支持ACID属性&#xff0c;即原子性&#xff08;Ato…...

【C#】基础巩固

最近写代码的时候各种灵感勃发&#xff0c;有了灵感&#xff0c;就该实现了&#xff0c;可是&#xff0c;实现起来有些不流畅&#xff0c;总是有这样&#xff0c;那样的卡壳&#xff0c;总结下来发现了几个问题。 1、C#基础内容不是特别牢靠&#xff0c;理解的不到位&#xff…...

基于Skywalking开发分布式监控(一)

接手为微服务系统搞链路监控项目一年多&#xff0c;也和skywalking打了一年多的交道&#xff0c;也应该有个总结&#xff0c;主要谈一下搭建监控系统遇到的难点和解决方案。 说明&#xff1a; 本文的代码均由本地演示代码替代&#xff0c;非实际代码 为啥选skywalking&#xf…...

高防服务器什么意思

高防服务器什么意思&#xff0c;为什么要用高防服务器&#xff0c;小编为您整理发布高防服务器什么意思的解读。 高防服务器是指具备较高防御能力的服务器&#xff0c;能够抵御DDoS/CC等网络攻击。 高防服务器通常用于保护游戏、APP、金融、电商等业务&#xff0c;这些领域因为…...

C/C++ - Auto Reference

目录 auto Reference auto 当使用auto​​关键字声明变量时&#xff0c;C编译器会根据变量的初始化表达式推断出变量的类型。 自动类型推断&#xff1a;auto​​关键字用于自动推断变量的类型&#xff0c;使得变量的类型可以根据初始化表达式进行推导。 初始化表达式&#x…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...

Tauri2学习笔记

教程地址&#xff1a;https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引&#xff1a;https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多&#xff0c;我按照Tauri1的教程来学习&…...