leetcode1237. 找出给定方程的正整数解
1237. 找出给定方程的正整数解 https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/
https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/
难度中等 101
给你一个函数  f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) == z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。
尽管函数的具体式子未知,但它是单调递增函数,也就是说:
- f(x, y) < f(x + 1, y)
- f(x, y) < f(x, y + 1)
函数接口定义如下:
interface CustomFunction {
public:// Returns some positive integer f(x, y) for two positive integers x and y based on a formula.int f(int x, int y);
}; 
你的解决方案将按如下规则进行评判:
- 判题程序有一个由 CustomFunction的9种实现组成的列表,以及一种为特定的z生成所有有效数对的答案的方法。
- 判题程序接受两个输入:function_id(决定使用哪种实现测试你的代码)以及目标结果z。
- 判题程序将会调用你实现的 findSolution并将你的结果与答案进行比较。
- 如果你的结果与答案相符,那么解决方案将被视作正确答案,即 Accepted。
示例 1:
输入:function_id = 1, z = 5 输出:[[1,4],[2,3],[3,2],[4,1]] 解释:function_id = 1 暗含的函数式子为 f(x, y) = x + y 以下 x 和 y 满足 f(x, y) 等于 5: x=1, y=4 -> f(1, 4) = 1 + 4 = 5 x=2, y=3 -> f(2, 3) = 2 + 3 = 5 x=3, y=2 -> f(3, 2) = 3 + 2 = 5 x=4, y=1 -> f(4, 1) = 4 + 1 = 5
示例 2:
输入:function_id = 2, z = 5 输出:[[1,5],[5,1]] 解释:function_id = 2 暗含的函数式子为 f(x, y) = x * y 以下 x 和 y 满足 f(x, y) 等于 5: x=1, y=5 -> f(1, 5) = 1 * 5 = 5 x=5, y=1 -> f(5, 1) = 5 * 1 = 5
提示:
- 1 <= function_id <= 9
- 1 <= z <= 100
- 题目保证 f(x, y) == z的解处于1 <= x, y <= 1000的范围内。
- 在 1 <= x, y <= 1000的前提下,题目保证f(x, y)是一个 32 位有符号整数。
/** // This is the custom function interface.* // You should not implement it, or speculate about its implementation* class CustomFunction {* public:*     // Returns f(x, y) for any given positive integers x and y.*     // Note that f(x, y) is increasing with respect to both x and y.*     // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)*     int f(int x, int y);* };*/class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {}
};遍历法:
class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> res;for (int x = 1; x <= 1000; x++) {for (int y = 1; y <= 1000; y++) {if (customfunction.f(x, y) == z) {res.push_back({x, y});}}}return res;}
};这段代码是一个解决问题的解法,它通过遍历x和y的取值范围从1到1000,并调用`customfunction.f(x, y)`方法进行计算,判断计算结果是否等于目标值z。如果相等,将当前的x和y加入到结果集res中。
整个算法的时间复杂度为O(n^2),其中n为1000。因为有两个嵌套的循环,每个循环都需要执行1000次,所以总共需要执行1000 * 1000 = 1000000次。
这个解法适用于求解自定义函数的问题,通过遍历所有可能的参数组合来查找满足特定条件的解。在这个例子中,我们通过遍历x和y的取值范围来寻找使得customfunction.f(x, y)等于目标值z的参数组合。
最后,将找到的参数组合存储在结果集res中,并返回res作为最终的解答。
根据题目描述,我们需要通过调用CustomFunction接口中的方法来找到满足条件f(x, y) == z的所有正整数数对x和y。
我们可以利用函数单调递增的性质进行搜索。从左下角开始,设初始位置为(x, y) = (1, 1000),然后按照以下规则进行搜索:
- 如果f(x, y) > z,则y减小1;
- 如果f(x, y) < z,则x增加1;
- 如果f(x, y) == z,则找到一个解,将(x, y)加入结果集。
重复上述步骤直到x或y超出范围。最后返回结果集即可。
相关文章:
 
leetcode1237. 找出给定方程的正整数解
1237. 找出给定方程的正整数解https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/ 难度中等 101 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满…...
 
sqlmap使用教程(6)-注入技术拓展
注入技术 选项--technique,可以用来指定SQL注入技术,默认为BEUSTQ。其中,B表示基于布尔盲注,E表示基于错误的盲注,U表示基于联合查询注入,S表示堆叠注入,T表示基于时间盲注,Q表示内联…...
 
苹果Find My市场需求火爆,伦茨科技ST17H6x芯片助力客户量产
苹果发布AirTag发布以来,大家都更加注重物品的防丢,苹果的 Find My 就可以查找 iPhone、Mac、AirPods、Apple Watch,如今的Find My已经不单单可以查找苹果的设备,随着第三方设备的加入,将丰富Find My Network的版图。产…...
 
3DMAX初级小白班第一课:菜单栏介绍
基本介绍 这里不可能一个一个选项全部教给大家(毕竟之后靠实操慢慢就记住了),只说一些相对需要注意的设置。 自定义-热键编辑器-热键设置 这里有你所需要的全部快捷键 自定义-自定义UI启动布局 将UI布局还原到启动的位置 自定义-通用单…...
 
Windows中Zookeeper与kafka的安装配置
一、Zookeeper安装与使用 1.安装包下载 直接在官网下载即可Apache ZooKeeper。 下载后直接解压到本地即可。 2.环境配置 1> 在目录中下增加data和log文件夹 2> 解压目录下的 conf 目录,将目录中的 zoo_sample.cfg 文件,复制一份,重…...
 
QT 官方例程阅读: XML Patterns 相关
标签用于在qt creator 中查询相关工程 一、标签 Schema Validator 模式验证器 就是根据 已知的XML 模式,验证输入的XML 文件格式是否匹配,不匹配可以输出不匹配位置 如下,,首先定义了contact 元素 的子元素列表,&…...
基于SpringBoot IP黑白名单的实现
业务场景 IP黑白名单是网络安全管理中常见的策略工具,用于控制网络访问权限,根据业务场景的不同,其应用范围广泛,以下是一些典型业务场景: 服务器安全防护: 黑名单:可以用来阻止已知的恶意IP地…...
 
Redis客户端之Redisson(二)Redisson分布式锁
一、原理: Redisson并没有通过setNx命令来实现加锁,而是基于 Redis 看⻔狗机制,自己实现了一套分布式锁逻辑。 1、加锁机制: 二、使用方法:...
 
掌握大语言模型技术: 推理优化
掌握大语言模型技术_推理优化 堆叠 Transformer 层来创建大型模型可以带来更好的准确性、少样本学习能力,甚至在各种语言任务上具有接近人类的涌现能力。 这些基础模型的训练成本很高,并且在推理过程中可能会占用大量内存和计算资源(经常性成…...
git如何导出提交记录及修改的文件清单?
导出git提交日志及修改文件 # 所有人的提交记录 git log --pretty=format:"%ai,%an:%s" --since="10 day ago" >> ~/Desktop/commit10.log#某一个人的提交记录 git log --pretty=format:"%ai,%an:%s" --since="30 day ago" |...
从零开始:Ubuntu Server中MySQL 8.0的安装与Django数据库配置详解
Ubuntu系统纯净安装MySQL8.0 1、安装Mysql8.0 sudo apt install mysql-server2、检查MySQL状态 sudo systemctl status mysql如下所示看见Active: active (running)说明mysql状态正常 ● mysql.service - MySQL Community ServerLoaded: loaded (/lib/systemd/system/mysql…...
 
Vue基础知识
Vue Vue基础知识 v-bind:动态绑定属性值 Vue 修改,标签内也修改 在methods 中可以定义很多函数 在 data 中可以定义很多变量 v-if / v-show:对符合条件的元素进行展示 v-for:把数据遍历出现在网页中 案例 <!DOCTYPE html><html lang"e…...
 
瀑布流布局 (初版)
瀑布流布局 文章目录 瀑布流布局前言1. 背景2. 点⬇️🔗去体验效果如下图所示: 一、初版waterfall布局和问题暴露?1.效果图如下:2.暴露问题如下图所示:第一张问题图:第二张问题图: 3.HTML代码如…...
硕士毕业论文写作笔记
一、写作顺序 1.标题、研究问题、研究方法 2.文献综述(占比1/5-1/6) 3.论证章节 4.结论、不足、启示 5.处理图表、参考文献的格式 6.绪论或引言 7.摘要、关键词 8.查重、装订 http://【硕士毕业论文写不下去,多亏听了张博士的论文写…...
 
成本更低、更可控,云原生可观测新计费模式正式上线
云布道师 在上云开始使用云产品过程中,企业一定遇见过两件“讨厌”事: 难以理解的复杂计费逻辑,时常冒出“这也能收费”的感叹; 某个配置参数调节之后,云产品使用成本不可预估的暴涨。 可观测作为企业 IT 运维必须品…...
 
5.列表选择弹窗(BottomListPopup)
愿你出走半生,归来仍是少年! 环境:.NET 7、MAUI 从底部弹出的列表选择弹窗。 1.布局 <?xml version"1.0" encoding"utf-8" ?> <toolkit:Popup xmlns"http://schemas.microsoft.com/dotnet/2021/maui"xmlns…...
(十三)Head first design patterns原型模式(c++)
原型模式 原型模式就是就是对对象的克隆。有一些私有变量外界难以访问,而原型模式可以做到对原型一比一的复刻。 其关键代码为下面的clone方法。此方法将本对象进行复制传递出去。 class ConcretePrototype1 : public Prototype{ public:ConcretePrototype1(stri…...
 
Python基础之数据库操作
一、安装第三方库PyMySQL 1、在PyCharm中通过 【File】-【setting】-【Python Interpreter】搜索 PyMySQL进行安装 2、通过PyCharm中的 Terminal 命令行 输入: pip install PyMySQL 注:通过pip安装,可能会提示需要更新pip,这时可执行&#…...
 
redis-发布缓存
一.redis的发布订阅 什么 是发布和订阅 Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。 Redis 客户端可以订阅任意数量的频道。 Redis的发布和订阅 客户端订阅频道发布的消息 频道发布消息 订阅者就可…...
 
Stata17安装教程
文章目录 **Stata17安装教程**前言系统要求Windows:macOS:Linux: 软件下载正式安装1.下载Stata 17安装包2.双击Stata17.exe开启安装3.接受同意条款,然后继续安装4.选择想要安装的版本,Stata BE为基础版、Stata SE为特别…...
 
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
 
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
 
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
 
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
 
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
 
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
 
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
 
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
