当前位置: 首页 > news >正文

22. 离线MC强化学习算法(1)

文章目录

  • 1. 理解离线MC强化学习的关键
  • 2. 什么是重要性采样
  • 3.重要性采样定理给我们的一般启示
  • 4.重要性采样定理给离线蒙特卡洛强化学习的启示

1. 理解离线MC强化学习的关键

离线强化学习的特点是采样策略 π ′ ≠ 待评估策略 π \pi'\ne 待评估策略\pi π=待评估策略π,这就带来一个问题:

如何根据 π ′ \pi' π获取的多条完整轨迹数据,计算得到 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a)的估计值,而不是 Q π ′ ( s , a ) Q_{\pi'}(s,a) Qπ(s,a)的估计值。

重要性采样定理为解决上述问题指明了方向,因此,理解重要性采样定理是理解离线MC强化学习的关键。

2. 什么是重要性采样

  • 重要性采样定理的积分描述

已知随机变量 x x x的函数 f ( x ) f(x) f(x) x x x的两个不同概率分布 p ( x ) , q ( x ) p(x),q(x) p(x),q(x),令 g ( x ) = p ( x ) f ( x ) q ( x ) g(x)=\frac{p(x)f(x)}{q(x)} g(x)=q(x)p(x)f(x),设 E p ( f ) E_p(f) Ep(f) f ( x ) f(x) f(x) p ( x ) p(x) p(x)下的期望, E q ( g ) E_q(g) Eq(g) g ( x ) g(x) g(x) q ( x ) q(x) q(x)分布下的期望,则:
{ E p ( f ) = E q ( g ) E p ( f ) = ∫ x p ( x ) f ( x ) d x E q ( g ) = ∫ x q ( x ) g ( x ) d x \begin{align}\begin{cases} E_p(f)=E_q(g)\\ E_p(f)=\int_xp(x)f(x)dx\\ E_q(g)=\int_xq(x)g(x)dx \end{cases} \end{align} Ep(f)=Eq(g)Ep(f)=xp(x)f(x)dxEq(g)=xq(x)g(x)dx

  • 重要性采样定理的统计学描述

根据重要性采样定理的积分描述,很容易推导出其统计学描述,如下:

已知对 x x x按照 q ( x ) q(x) q(x)进行采样得到的样本集为 S q = { x q , 1 , x q , 2 , ⋯ , x q , m } S_q=\{x_{q,1},x_{q,2},\cdots,x_{q,m}\} Sq={xq,1,xq,2,,xq,m},则
可利用如下公式计算出 E p ( f ) E_p(f) Ep(f)的渐进无偏估计 E p ^ ( f ) \hat{E_p}(f) Ep^(f) E q ( g ) E_q(g) Eq(g)
渐进无偏估计 E q ^ ( g ) \hat{E_q}(g) Eq^(g):
E p ^ ( f ) = E q ^ ( g ) = 1 m ∑ k = 1 m p ( x q , k ) f ( x q , k ) q ( x q , k ) \begin{align} \hat{E_p}(f)=\hat{E_q}(g)=\frac{1}{m}\sum_{k=1}^m\frac{p(x_{q,k})f(x_{q,k})}{q(x_{q,k})} \end{align} Ep^(f)=Eq^(g)=m1k=1mq(xq,k)p(xq,k)f(xq,k)

3.重要性采样定理给我们的一般启示

在估计 x x x的函数 f ( x ) f(x) f(x) p ( x ) p(x) p(x)下的期望时,若实际情形不允许按照 p ( x ) p(x) p(x) x x x进行采样,从而直接根据公式 E p ^ ( f ) = 1 m ∑ k = 1 m f ( x p , k ) \hat{E_p}(f)=\frac{1}{m}\sum_{k=1}^mf(x_{p,k}) Ep^(f)=m1k=1mf(xp,k)估计 E p ( f ) E_p(f) Ep(f)时,可以按照概率 q ( x ) q(x) q(x)
x x x进行采样获得样本集 S q S_q Sq,然后利用公式(2)进行间接估计,得到 E p ( f ) E_p(f) Ep(f)

4.重要性采样定理给离线蒙特卡洛强化学习的启示

在离线MC强化学习中,要解决的问题是:

已知采样策略 π ′ \pi' π、待评估策略 π \pi π、利用 π ′ \pi' π采集获得m条完整轨迹 E P = { E p 1 , E p 2 , ⋯ , E p m } EP=\{Ep_1,Ep_2,\cdots,Ep_m\} EP={Ep1,Ep2,,Epm},其中, E p k = { ( s k , 0 , a k , 0 , r k , 1 ) , ( s k , 1 , a k , 1 , r k , 2 ) , ⋯ , ( s k , N k − 1 , a k , N k − 1 , r k , N k ) , ( s k , N k , a k , N k , r k , N k + 1 ) } , k = 1 , 2 , ⋯ , m Ep_k=\{(s_{k,0},a_{k,0},r_{k,1}),(s_{k,1},a_{k,1},r_{k,2}),\cdots,(s_{k,N_k-1},a_{k,N_k-1},r_{k,N_k}),(s_{k,N_k},a_{k,N_k},r_{k,N_k+1})\},k=1,2,\cdots,m Epk={(sk,0,ak,0,rk,1),(sk,1,ak,1,rk,2),,(sk,Nk1,ak,Nk1,rk,Nk),(sk,Nk,ak,Nk,rk,Nk+1)},k=1,2,,m,所有轨迹的
最后一个状态 s k , N k ≡ s T ( 终止状态 ) s_{k,N_k}\equiv s_T(终止状态) sk,NksT(终止状态)
,若固定 s t = s , a t = a s_t=s,a_t=a st=s,at=a,则每条轨迹中三元组 ( s , a , r ) (s,a,r) (s,a,r)中的 r r r可以看做是随机变量,累积回报 G π ′ ( s , a ) G^{\pi'}(s,a) Gπ(s,a) r r r的函数

求解:策略 π \pi π下的累积回报函数 G π ( s , a ) G^{\pi}(s,a) Gπ(s,a)的期望 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a)的估计值 Q π ^ ( s , a ) \hat{Q_\pi}(s,a) Qπ^(s,a)

求解过程:

  • 1.根据 E P EP EP,利用公式计算得到 ( s , a ) (s,a) (s,a)固定时,随机变量 r r r的函数 G π ′ ( s , a ) G^{\pi '}(s,a) Gπ(s,a)在m个采样点
    的样本函数值 G k π ′ ( s , a ) , k = 1 , 2 , ⋯ , m G^{\pi'}_k(s,a),k=1,2,\cdots,m Gkπ(s,a),k=1,2,,m
  • 2.根据重要性采样公式(2),及 G k π ′ ( s , a ) = G k π ( s , a ) G^{\pi '}_k(s,a)=G^{\pi}_k(s,a) Gkπ(s,a)=Gkπ(s,a)可得:
    Q π ^ ( s , a ) = 1 m ∑ k = 1 m p k π p k π ′ G k π ( s , a ) = 1 m ∑ k = 1 m p k π p k π ′ G k π ′ ( s , a ) p k π − 策略 π 下,出现完整轨迹 E p k 的概率 p k π ′ − 策略 π ′ 下,出现完整轨迹 E p k 的概率 ρ k = p k π p k π ′ − 重要性采样比例,表示待评估策略 π 下和采样策略 π ′ 下获得轨迹 E p k 的概率之比 p k π = [ π ( a k , 0 ∣ s k , 0 ) P s k , 0 s k , 1 a k , 0 ] × [ π ( a k , 1 ∣ s k , 1 ) P s k , 1 s k , 2 a k , 1 ] × ⋯ × [ π ( a k , N k − 1 ∣ s k , N k − 1 ) P s k , N k − 1 s k , N k a k , N k − 1 ] = ∏ i = 0 N k − 1 π ( a k , i ∣ s k , i ) P s k , i s k , i + 1 a k , i p k π ′ = ∏ i = 0 N k − 1 π ′ ( a k , i ∣ s k , i ) P s k , i s k , i + 1 a k , i ρ k = ∏ i = 0 N k − 1 π ( a k , i ∣ s k , i ) ∏ i = 0 N k − 1 π ′ ( a k , i ∣ s k , i ) \begin{align*} \hat{Q_\pi}(s,a)&=\frac{1}{m}\sum_{k=1}^m\frac{p_k^{\pi}}{p_k^{{\pi}'}}G^{{\pi}}_k(s,a)\\ &=\frac{1}{m}\sum_{k=1}^m\frac{p_k^{\pi}}{p_k^{{\pi}'}}G^{{\pi}'}_k(s,a)\\ p_k^{\pi}&-策略\pi 下,出现完整轨迹Ep_k的概率\\ p_k^{\pi'}&-策略\pi' 下,出现完整轨迹Ep_k的概率\\ \rho_k=\frac{p_k^{\pi}}{p_k^{\pi'}}&-重要性采样比例,表示待评估策略\pi 下和采样策略\pi' 下获得轨迹Ep_k的概率之比\\ p_k^{\pi}&=[\pi(a_{k,0}|s_{k,0})P_{s_{k,0}s_{k,1}}^{a_{k,0}}]\times [\pi(a_{k,1}|s_{k,1})P_{s_{k,1}s_{k,2}}^{a_{k,1}}]\times\cdots \times[\pi(a_{k,N_k-1}|s_{k,N_k-1})P_{s_{k,N_k-1}s_{k,N_k}}^{a_{k,N_k-1}}]\\ &=\prod_{i=0}^{N_k-1}\pi(a_{k,i}|s_{k,i})P_{s_{k,i}s_{k,i+1}}^{a_{k,i}}\\ p_k^{\pi'}&=\prod_{i=0}^{N_k-1}\pi'(a_{k,i}|s_{k,i})P_{s_{k,i}s_{k,i+1}}^{a_{k,i}}\\ \rho_k&=\frac{\prod_{i=0}^{N_k-1}\pi(a_{k,i}|s_{k,i})}{\prod_{i=0}^{N_k-1}\pi'(a_{k,i}|s_{k,i})} \end{align*} Qπ^(s,a)pkπpkπρk=pkπpkπpkπpkπρk=m1k=1mpkπpkπGkπ(s,a)=m1k=1mpkπpkπGkπ(s,a)策略π下,出现完整轨迹Epk的概率策略π下,出现完整轨迹Epk的概率重要性采样比例,表示待评估策略π下和采样策略π下获得轨迹Epk的概率之比=[π(ak,0sk,0)Psk,0sk,1ak,0]×[π(ak,1sk,1)Psk,1sk,2ak,1]××[π(ak,Nk1sk,Nk1)Psk,Nk1sk,Nkak,Nk1]=i=0Nk1π(ak,isk,i)Psk,isk,i+1ak,i=i=0Nk1π(ak,isk,i)Psk,isk,i+1ak,i=i=0Nk1π(ak,isk,i)i=0Nk1π(ak,isk,i)

相关文章:

22. 离线MC强化学习算法(1)

文章目录 1. 理解离线MC强化学习的关键2. 什么是重要性采样3.重要性采样定理给我们的一般启示4.重要性采样定理给离线蒙特卡洛强化学习的启示 1. 理解离线MC强化学习的关键 离线强化学习的特点是采样策略 π ′ ≠ 待评估策略 π \pi\ne 待评估策略\pi π′待评估策略π&…...

如何阅读xml电子发票

xml电子发票是官方给出的电子存档的文件格式,本质是文本,所以文件很小,大量发票存储,能够更加凸显优势。 但是xml电子发票不方便阅读,因为里面是xml格式,对于财务人员来讲,看“代码”简直太难了…...

php实现多进程的几种方式

目录 一:使用pcntl扩展库 二:使用Swoole扩展 三:使用多进程模式PHP-FPM 在PHP中实现多进程主要有以下几种方式: 一:使用pcntl扩展库 pcntl扩展库提供了多线程相关的函数,如pcntl_fork()用于创建子进程…...

CmakeList教程

一、CmakeList介绍: cmake 是一个跨平台、开源的构建系统。它是一个集软件构建、测试、打包于一身的软件。它使用与平台和编译器独立的配置文件来对软件编译过程进行控制。它会通过写的语句自动生成一个MakeFile,从而实现高效编译 二、CmakeList的常用指令 1.指定…...

JavaWeb之JavaScript-Vue --黑马笔记

什么是JavaScript? JavaScript(简称:JS) 是一门跨平台、面向对象的脚本语言。是用来控制网页行为的,它能使网页可交互。 JavaScript 和 Java 是完全不同的语言,不论是概念还是设计。但是基础语法类似。 …...

pikachu_ssrf攻略

ssrf(curl): 打开pikachu靶场: http://127.0.0.1/pikachu-master/vul/ssrf/ssrf_curl.php?urlhttp://127.0.0.1/pikachu-master/vul/ssrf/ssrf_info/info1.php 发现URL地址最后面是info1.php 猜测一下有没有可能存在info2.php?…...

门面模式 Facade Pattern

门面模式 门面模式(Facade Pattern),也称之为外观模式,其核心为:外部与一个子系统的通信必须通过一个统一的外观对象进行,使得子系统更易于使用。 在软件开发领域有这样一句话:计算机科学领域…...

Linux基础指令大汇总

Linux的指令比较多,在学习的过程中要学会总结和归纳,同时结合实践多多使用,就像学数学一样,不是背过公式就等于掌握的,而是要知道在什么时候用,怎么用才是关键。 这篇文章会列举一系列常用的指令&#xff0…...

Unity配置表xlsx/xls打包后读取错误问题

前言 代码如下: //文本解析private void ParseText(){//打开文本 读FileStream stream File.Open(Application.streamingAssetsPath excelname, FileMode.Open, FileAccess.Read, FileShare.Read);//读取文件流IExcelDataReader excelRead ExcelReaderFactory…...

CSS基本知识总结

目录 一、CSS语法 二、CSS选择器 三、CSS样式表 1.外部样式表 2.内部样式表 3.内联样式 四、CSS背景 1.背景颜色:background-color 2.背景图片:background-image 3.背景大小:background-size 4.背景图片是否重复:backg…...

3dmax效果图渲染出现曝光怎么解决?

在使用3ds Max完成效果图渲染工作时,有时会遇到曝光过度的问题,这会使得渲染的图像出现光斑或者过亮,损害了效果的真实感和美观度。那么解决解决3dmax曝光问题呢?一起看看吧! 3dmax效果图渲染出现曝光解决方法 1、相机…...

科技、文化与旅游的融合创新:智慧文旅的未来之路

在当今社会,科技、文化与旅游的融合已经成为文旅产业转型升级的重要趋势。这种融合不仅有助于提升文旅产业的核心竞争力,更有助于推动产业的数字化转型和可持续发展。 本文将深入探讨科技、文化与旅游的融合创新,以及智慧文旅场景的解决方案…...

【第四天】蓝桥杯备战

题 1、求和2、天数3、最大缝隙 1、求和 https://www.lanqiao.cn/problems/1442/learning/ 解法:字符串方法的应用 import java.util.Scanner; // 1:无需package // 2: 类名必须Main, 不可修改public class Main {public static void main(String[] args) {Scann…...

计算机服务器中了halo勒索病毒怎么办,halo勒索病毒解密处理流程

计算机技术的发展与应用为企业的生产生活提供了坚实基础,但同时也为网络安全威胁制造了有利条件。近期,网络上的勒索病毒非常嚣张,给企业的计算机服务器带来严重威胁。近日,云天数据恢复中心接到山东某制造公司的求助,…...

基于LSTM的负荷预测,基于BILSTM的负荷预测,基于GRU的负荷预测,基于BIGRU的负荷预测,基于BP神经网络的负荷预测

目录 背影 摘要 代码和数据下载:基于LSTM的负荷预测,基于BILSTM的负荷预测,基于GRU的负荷预测,基于BIGRU的负荷预测,基于BP神经网络的负荷预测资源-CSDN文库 https://download.csdn.net/download/abc991835105/8876806…...

Linux命令-apachectl命令(Apache服务器前端控制工具)

apachectl命令 是Apache的Web服务器前端控制工具,用以启动、关闭和重新启动Web服务器进程。 语法 apachectl (参数)参数 configtest:检查设置文件中的语法是否正确;fullstatus:显示服务器完整的状态信息;graceful&a…...

5.【SpringBoot3】文件上传

1. 文件上传到本地 需求分析 在用户更换头像或发布文章时,需要携带一个图片的 url 地址,该 url 地址是当用户访问文件上传接口,将图片上传成功后,服务器返回的地址。所以,后台需要提供一个文件上传接口,用…...

网络安全态势感知平台概述

网络安全态势感知平台 文章目录 网络安全态势感知平台网络安全态势感知平台是什么一、网络安全态势感知平台是什么?二、网络安全态势感知很重要三、网络安全态势感知基础功能以某公司态势平台产品为例具体功能有以下: 网络安全态势感知平台是什么 网络安…...

PHP导出csv文件格式(最快捷的方式导出Excel文件)

php导出csv文件格式比起用PHPExcel插件导出excel文件速度快100倍! 以下是几种不同的PHP导出CSV文件的方法: 方法一(php://output方式用fputcsv函数格式化成csv数据): ----------------------------------------------…...

vue3常用代码

文章目录 监听路由vue3 警告Feature flag __VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.mitt、project/inject 无效解决方案 菜鸟做项目时发现很多 vue3 常用的代码,所以来总结一下! 监听路由 import { useRoute } from "…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...