当前位置: 首页 > news >正文

机器学习实验3——支持向量机分类鸢尾花

文章目录

    • 🧡🧡实验内容🧡🧡
    • 🧡🧡数据预处理🧡🧡
      • 代码
      • 认识数据
      • 相关性分析
      • 径向可视化
      • 各个特征之间的关系图
    • 🧡🧡支持向量机SVM求解🧡🧡
      • 直觉理解:
      • 数学推导
      • 代码
      • 运行结果
    • 🧡🧡总结🧡🧡

🧡🧡实验内容🧡🧡

基于鸢尾花数据集,完成关于支持向量机的分类模型训练、测试与评估。

🧡🧡数据预处理🧡🧡

代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# ==================特征探索====================# ===认识数据===
iris = datasets.load_iris()
print("Feature names: {}".format(iris['feature_names']))
print("Target names: {}".format(iris["target_names"]))
print("target:\n{}".format(iris['target'])) # 0 代表setosa,1 代表versicolor,2 代表virginica。
print("shape of data: {}".format(iris['data'].shape))# ===转为df对象===
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
feature_df=df.drop('label',axis=1,inplace=False) # 取出特征
print(df)# ===相关性矩阵===
corr_matrix = feature_df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()# ===径向可视化===
ax = pd.plotting.radviz(df, 'label', colormap='brg')
ax.add_artist(plt.Circle((0,0), 1, color='r', fill = False))# ===各特征之间关系矩阵图===
# 设置颜色主题
g = sns.pairplot(data=df, palette="pastel", hue= 'label')

认识数据

属性:花萼长度,花萼宽度,花瓣长度,花瓣宽度
分类:Setosa,Versicolour,Virginica
在这里插入图片描述
在这里插入图片描述

相关性分析

如下图,可以直观看到花瓣宽度(Petal Width)和花瓣长度(Petal Length)存在很高的正相关性,且它们与花萼长度(Speal Length)也具有很高的正相关性,而花萼宽度(Speal Width)与其他三个属性特征的相关性均很弱。
在这里插入图片描述

径向可视化

用于观察每种类别花的四个特征之间的相对关系(线性大小关系)。
如下图,其中0、1、2分别对应Setosa,Versicolour,Virginica类别,可以直观看出:Setosa花的花萼宽度(Speal Width)和花萼长度(Speal Length)这两个特征相比其他两个特征花瓣宽度(Petal Width)和花瓣长度(Petal Length)具有区分性,而Versicolour,Virginica花的四个特征分布很相似,不好区分。
在这里插入图片描述

各个特征之间的关系图

从下图可以看出,Setosa花的花瓣宽度(Petal Width)和花瓣长度(Petal Length)的分布相比其他两类具有很好的区分性。
在这里插入图片描述

🧡🧡支持向量机SVM求解🧡🧡

直觉理解:

对于二维特征,如何区分图中不同的点
第一种思路:如下左图画一条线,但是是一个不太好的分割线
而换一种思路,如下右图,先找两个分类的决策边界(两边的虚线)之间的间隔区域,再取间隔区域的中间为分割线,这样能保证分割效果最佳。因此寻找最佳决策边界线(中间线)的问题可以转化为求解两类数据的最大间隔问题。
在这里插入图片描述在这里插入图片描述
因此将决策边界上下移动c,得到间隔的两个边界线,如下左图,此时这两个边界线称为支持向量,它们决定了间隔距离。如下右图,经过数学变换,可以得到最终要求的超平面表达式,即求解参数w、b即可
在这里插入图片描述在这里插入图片描述
除此之外,只考虑分类点的决策边界之间的距离的间隔,称为硬间隔,同时考虑距离和异常点损失(下图红线上方的黄点)的间隔,称为软间隔。
在这里插入图片描述

数学推导

某点到超平面的距离r:(几何间隔,可以代表分类正确的确信度)
在这里插入图片描述
目标超平面之间的间隔距离γ:
在这里插入图片描述
约束条件:点到超平面距离r >= 超平面间隔距离γ的一半:
在这里插入图片描述
则最终求解的函数表达式为:
在这里插入图片描述

但是以上函数表达式为非凸函数,因此要:

  1. 先转为凸函数
  2. 用拉格朗日乘子法和KKT条件求解对偶问题

1.转为凸函数:
在这里插入图片描述

2.用拉格朗日乘子法和KKT条件求解对偶问题
这个过程就涉及到高阶的数学知识了,我这里也不是很懂,只大概了解:
为什么要用拉格朗日乘子法:将不等式约束转换为等式约束。
整合成如下拉格朗日表达式:
在这里插入图片描述
依据对偶性,求解问题为:
在这里插入图片描述
先求解:在这里插入图片描述
根据KKT条件:对w、b求偏导可得:
在这里插入图片描述
代入L(w,b,a):在这里插入图片描述
再求解:在这里插入图片描述
在这里插入图片描述

3.利用SMO求解α、从而求解w、b
现在优化问题变成了如上的形式,但是它的规模正比于训练样本数m,当m很大时,会有很大开销,因此针对这个问题的特性,有更高效的优化算法,即序列最小优化(SMO)算法。
其大概思想是:先固定α以外的参数,然后对α求极值,在上述约束条件下,α可以由其他变量导出,这样,在参数初始化后,不断迭代,可以最终达到收敛。
通过SMO求得的w、b为:
在这里插入图片描述
则超平面的公式为:
在这里插入图片描述
最后根据超平面的符号,表达成分类决策函数即可:
在这里插入图片描述

代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScalerclass SMO:def __init__(self, X, y, C, kernel, tol, max_passes=10):self.X = X  # 样本特征 m*n m个样本 n个特征self.y = y  # 样本标签 m*1self.C = C  # 惩罚因子, 用于控制松弛变量的影响self.kernel = kernel  # 核函数self.tol = tol  # 容忍度self.max_passes = max_passes  # 最大迭代次数self.m, self.n = X.shapeself.alpha = np.zeros(self.m)self.b = 0self.w = np.zeros(self.n)# 计算核函数def K(self, i, j):if self.kernel == 'linear':return np.dot(self.X[i].T, self.X[j])elif self.kernel == 'rbf':gamma = 0.5return np.exp(-gamma * np.linalg.norm(self.X[i] - self.X[j]) ** 2)else:raise ValueError('Invalid kernel specified')def predict(self, X_test):pred = np.zeros_like(X_test[:, 0])pred = np.dot(X_test, self.w) + self.breturn np.sign(pred)def train(self):"""训练模型:return:"""passes = 0while passes < self.max_passes:num_changed_alphas = 0for i in range(self.m):# 计算E_i, E_i = f(x_i) - y_i, f(x_i) = w^T * x_i + b# 计算误差E_iE_i = 0for ii in range(self.m):E_i += self.alpha[ii] * self.y[ii] * self.K(ii, i)E_i += self.b - self.y[i]# 检验样本x_i是否满足KKT条件if (self.y[i] * E_i < -self.tol and self.alpha[i] < self.C) or (self.y[i] * E_i > self.tol and self.alpha[i] > 0):# 随机选择样本x_jj = np.random.choice(list(range(i)) + list(range(i + 1, self.m)), size=1)[0]# 计算E_j, E_j = f(x_j) - y_j, f(x_j) = w^T * x_j + b# E_j用于检验样本x_j是否满足KKT条件E_j = 0for jj in range(self.m):E_j += self.alpha[jj] * self.y[jj] * self.K(jj, j)E_j += self.b - self.y[j]alpha_i_old = self.alpha[i].copy()alpha_j_old = self.alpha[j].copy()# L和H用于将alpha[j]调整到[0, C]之间if self.y[i] != self.y[j]:L = max(0, self.alpha[j] - self.alpha[i])H = min(self.C, self.C + self.alpha[j] - self.alpha[i])else:L = max(0, self.alpha[i] + self.alpha[j] - self.C)H = min(self.C, self.alpha[i] + self.alpha[j])# 如果L == H,则不需要更新alpha[j]if L == H:continue# eta: alpha[j]的最优修改量eta = 2 * self.K(i, j) - self.K(i, i) - self.K(j, j)# 如果eta >= 0, 则不需要更新alpha[j]if eta >= 0:continue# 更新alpha[j]self.alpha[j] -= (self.y[j] * (E_i - E_j)) / eta# 根据取值范围修剪alpha[j]self.alpha[j] = np.clip(self.alpha[j], L, H)# 检查alpha[j]是否只有轻微改变,如果是则退出for循环if abs(self.alpha[j] - alpha_j_old) < 1e-5:continue# 更新alpha[i]self.alpha[i] += self.y[i] * self.y[j] * (alpha_j_old - self.alpha[j])# 更新b1和b2b1 = self.b - E_i - self.y[i] * (self.alpha[i] - alpha_i_old) * self.K(i, i) \- self.y[j] * (self.alpha[j] - alpha_j_old) * self.K(i, j)b2 = self.b - E_j - self.y[i] * (self.alpha[i] - alpha_i_old) * self.K(i, j) \- self.y[j] * (self.alpha[j] - alpha_j_old) * self.K(j, j)# 根据b1和b2更新bif 0 < self.alpha[i] and self.alpha[i] < self.C:self.b = b1elif 0 < self.alpha[j] and self.alpha[j] < self.C:self.b = b2else:self.b = (b1 + b2) / 2num_changed_alphas += 1if num_changed_alphas == 0:passes += 1else:passes = 0# 提取支持向量和对应的参数idx = self.alpha > 0  # 支持向量的索引# SVs = X[idx]selected_idx = np.where(idx)[0]SVs = self.X[selected_idx]SV_labels = self.y[selected_idx]SV_alphas = self.alpha[selected_idx]# 计算权重向量和截距self.w = np.sum(SV_alphas[:, None] * SV_labels[:, None] * SVs, axis=0)self.b = np.mean(SV_labels - np.dot(SVs, self.w))print("w", self.w)print("b", self.b)def score(self, X, y):predict = self.predict(X)print("predict", predict)print("target", y)return np.mean(predict == y)# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
y[y != 0] = -1
y[y == 0] = 1 # 分成两类# 为了方便可视化,只取前两个特征
X2 = X[:,:2]
# # 分别画出类别 0 和 1 的点
plt.scatter(X2[y == 1, 0], X2[y == 1, 1], color='red',label="class 1")
plt.scatter(X2[y == -1, 0], X2[y == -1, 1], color='blue',label="class -1")
plt.xlabel("Speal Width")
plt.ylabel("Speal Length")
plt.legend()
plt.show()# 数据预处理,将特征进行标准化,并将数据划分为训练集和测试集
scaler = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3706)
X_train_std = scaler.fit_transform(X_train)# 创建SVM对象并训练模型
svm = SMO(X_train_std, y_train, C=0.6, kernel='rbf', tol=0.001)
svm.train()# 预测测试集的结果并计算准确率
X_test_std = scaler.transform(X_test)
accuracy = svm.score(X_test_std, y_test)
print('正确率: {:.2%}'.format(accuracy))from sklearn.metrics import confusion_matrix, roc_curve, auc
y_pred=svm.predict(X_test_std)# 绘制混淆矩阵
def cal_ConfusialMatrix(y_true_labels, y_pred_labels):cm = np.zeros((2, 2))y_true_labels = [0 if x == -1 else x for x in y_true_labels]y_pred_labels = [0 if x == -1 else x for x in y_pred_labels]for i in range(len(y_true_labels)):cm[ y_true_labels[i], y_pred_labels[i] ] += 1plt.figure(figsize=(8, 6))sns.heatmap(cm, annot=True, fmt='g', cmap='Blues', xticklabels=['Predicted Negative', 'Predicted Positive'], yticklabels=['Actual Negative', 'Actual Positive'])plt.xlabel('Predicted label')plt.ylabel('True label')plt.title('Confusion Matrix')plt.show()y_pred=[int(x) for x in y_pred]
y_test=[int(x) for x in y_test]
cal_ConfusialMatrix(y_test, y_pred)

运行结果

由于鸢尾花为三分类,为了简化实验,这里先把setosa定义为1类(+1),versicolor、virginica组合定义为1类(-1)。
做出其对于sepal width和sepal length的分布图,可以看到,训练样本应该是线性可分的。
在这里插入图片描述

按照训练集:测试集=8:2的比例进行训练,之后进行测试集分类结果如下:

线性核:
在这里插入图片描述
在这里插入图片描述

高斯核:
在这里插入图片描述
在这里插入图片描述

🧡🧡总结🧡🧡

实验结果:
当使用的核函数为线性核时,准确率能达到100%,而使用高斯核时,准确率降低到96.67%(其实从混淆矩阵可以看到,只分类错误1个),且运行时间相对长很多。

分析原因:
线性核适用于数据集具有线性可分性的情况,即类别之间可以通过一条直线进行划分。在这种情况下,线性核可以提供较好的分类性能,并且计算效率较高。
高斯核可以更好地处理非线性问题。高斯核可以将输入空间映射到一个更高维度的特征空间,从而使得数据在新的特征空间中更容易被线性分割。但是,高斯核也有其缺点:在使用高斯核时,需要调整的超参数较多,如 gamma 参数和正则化参数 C,不正确的参数选择可能导致过拟合或欠拟合的问题。此外,高斯核计算复杂度较高,需要计算每个样本与其他样本之间的相似度,因此在数据集上的训练和预测时间可能较长。
因此综合分析,本实验中鸢尾花的特征为线性,因此使用线性核效果更佳。同时高斯核对参数比较敏感,实验中对于高斯核的参数选择可能也不够恰当。

相关文章:

机器学习实验3——支持向量机分类鸢尾花

文章目录 &#x1f9e1;&#x1f9e1;实验内容&#x1f9e1;&#x1f9e1;&#x1f9e1;&#x1f9e1;数据预处理&#x1f9e1;&#x1f9e1;代码认识数据相关性分析径向可视化各个特征之间的关系图 &#x1f9e1;&#x1f9e1;支持向量机SVM求解&#x1f9e1;&#x1f9e1;直觉…...

R语言【taxlist】——clean():移除孤立的记录

Package taxlist version 0.2.4 Description 对于 taxlist 类对象的操作可能会产生独立的条目。clean() 方法就是用来删除这样的条目&#xff0c;并恢复 taxlist 对象的一致性。 Usage clean(object, ...)## S4 method for signature taxlist clean(object, times 2, ...) A…...

CentOS 7.9 OS Kernel Update 3.10 to 4.19

date: 2024-01-18, 2024-01-26 原 OS Kernel 3.10 升级至 4.19 1.检查默认内核 检查 vmlinuz 版本 [rootlocalhost ~]# grubby --default-kernel /boot/vmlinuz-3.10.0-1160.105.1.el7.x86_64 [rootlocalhost ~]#检查 Linux 内核版本 [rootlocalhost ~]# uname -a Linux loc…...

k8s---安全机制

k8s的安全机制&#xff0c;分布式集群管理工具&#xff0c;就是容器编排。安全机制的核心&#xff1a;APIserver。为整个集群内部通信的中介&#xff0c;也是外控控制的入口。所有的机制都是围绕apiserver来进行设计&#xff1a; 请求api资源&#xff1a; 1、认证 2、鉴权 …...

GitHub 一周热点汇总第7期(2024/01/21-01/27)

GitHub一周热点汇总第7期 (2024/01/21-01/27) &#xff0c;梳理每周热门的GitHub项目&#xff0c;离春节越来越近了&#xff0c;不知道大家都买好回家的票没有&#xff0c;希望大家都能顺利买到票&#xff0c;一起来看看这周的项目吧。 #1 rustdesk 项目名称&#xff1a;rust…...

kotlin data clas 数据类

data class 介绍 kotlin 中 data class 是一种持有数据的特殊类 编译器自动从主构造函数中声明的所有属性导出以下成员&#xff1a; .equals()/.hashCode() 对 .toString() 格式是 "User(nameJohn, age42)" .componentN() 函数 按声明顺序对应于所有属性。…...

Java基础知识-异常

资料来自黑马程序员 异常 异常&#xff0c;就是不正常的意思。在生活中:医生说,你的身体某个部位有异常,该部位和正常相比有点不同,该部位的功能将受影响.在程序中的意思就是&#xff1a; 异常 &#xff1a;指的是程序在执行过程中&#xff0c;出现的非正常的情况&#xff0c;…...

跟着cherno手搓游戏引擎【12】渲染context和首个三角形

渲染上下文&#xff1a; 目的&#xff1a;修改WindowsWindow的结构&#xff0c;把glad抽离出来 WindowsWindow.h:新建m_Context #pragma once #include "YOTO/Window.h" #include <YOTO/Renderer/GraphicsContext.h> #include<GLFW/glfw3.h> #include…...

MybatisPlus二级映射和关联对象ResultMap

文章目录 一、业务背景1. 数据库表结构2. 需求 二、使用映射直接得到指定结构三、其他文件1. Mapper2. Service3. Controller 四、概念理解一级映射二级映射聚合 五、标签使用1. \<collection\> 标签2. \<association\> 标签 在我们的教程中&#xff0c;我们设计了…...

低代码开发业务在AIGC时代的应用

随着人工智能和图形计算能力的快速发展&#xff0c;低代码开发平台在AIGC&#xff08;人工智能&#xff0c;物联网&#xff0c;大数据和云计算&#xff09;时代中扮演着至关重要的角色。本文将介绍低代码开发业务的概念和优势&#xff0c;探讨其在AIGC时代的应用及其对传统软件…...

惠普1536dnf MFP报52扫描仪错误维修

如果您使用的惠普HP LaserJet 1536dnf MFP打印机可能会遇到“52扫描仪错误”的提示。这个错误可能会阻止你使用打印机的扫描功能。在这里,我将提供一些有用的解决方法来帮助大家去解决这个问题。-----吴中函 故障描述: 一台某单位正在使用的惠普HP LaserJet 1536dnf MFP黑白…...

【MIdjourney】五个特殊物体关键词

1.碳酸(Carbonate) 这一词语的本意是指包含碳&#xff08;C&#xff09;、氧&#xff08;O&#xff09;和氢&#xff08;H&#xff09;元素的化合物。而在MIdjourney中添加该词汇会使得生成的图片具有水滴效果且富有动态感。 2.灯丝(Filament) Filament效果可能包括更逼真的…...

2024/1/27 备战蓝桥杯 1

目录 求和 0求和 - 蓝桥云课 (lanqiao.cn) 成绩分析 0成绩分析 - 蓝桥云课 (lanqiao.cn) 合法日期 0合法日期 - 蓝桥云课 (lanqiao.cn) 时间加法 0时间加法 - 蓝桥云课 (lanqiao.cn) 扫雷 0扫雷 - 蓝桥云课 (lanqiao.cn) 大写 0大写 - 蓝桥云课 (lanqiao.cn) 标题…...

初学数据结构:Java对象的比较

目录 1. PriorityQueue中插入对象2. 元素的比较2.1 基本类型的比较2.2 对象比较的问题 3. 对象的比较3.1 基于Comparable接口类的比较3.2 基于比较器比较3.3 三种方式对比 4. 集合框架中PriorityQueue的比较方式5. 使用PriorityQueue创建大小堆&#xff0c;解决TOPK问题 【本节…...

mac 10.15.7 Unity 2021.3.14 XCode 12.4 -> Unity IOS 自动安装 Cocoapods 失败解决方法

自己这两天在用Unity开发IOS时&#xff0c;遇到了安装Cocoapods失败的问题&#xff0c;记录一下问题及解决方法&#xff0c;便于自己后续查看&#xff0c;以及有相同遭遇的人查看 发生场景&#xff1a;打开 unity&#xff0c;触发自动安装 Cocoapods -> 安装失败&#xff08…...

Elasticsearch 中使用MustNot等同于不登录遇到的坑

1、在写关键词推荐时,需要把当前文章过滤掉,不能再推荐自己的文章,所以再es中需要用到 MustNot属性查询 /// <summary> /// 服务中心es检索 /// </summary> /// <param name="input"></param> /// <returns></…...

java抽象工厂实战与总结

文章目录 一、工厂模式&#xff08;三种&#xff09;1.简单工厂模式1.1 概念&#xff1a;1.2 使用场景&#xff1a;1.3 模型图解&#xff1a;1.4 伪代码&#xff1a; 2.工厂方法模式2.1 概念&#xff1a;2.2 使用场景&#xff1a;2.3 模型图解&#xff1a;2.4 伪代码 3.抽象工厂…...

Compose | UI组件(六) | 选择框

文章目录 前言Checkbox 复选框的含义Checkbox 复选框的使用Switch 单选框的含义Switch 单选框的使用Slider 滑竿组件的含义Slider 滑竿组件的使用 总结 前言 随着移动端的技术不断更新迭代&#xff0c;Compose也运用的越来越广泛&#xff0c;很多人都开始学习Compose 本文主要…...

C++拷贝构造函数、赋值学习整理:

拷贝构造函数&#xff1a; 概念&#xff1a; 构造函数的第一个参数&#xff0c;是类本身的const引用&#xff08;一般情况下没有其他参数&#xff0c;少数情况&#xff1a;其他参数必须有默认值&#xff01;&#xff09;称此类构造函数为拷贝构造函数 特征&#xff1a; 1&am…...

[亲测源码]ps软件网页版在线使用 PS网站程序源码 photoshop网页版源码 网页版的ps软件源码

在线PS作图修图网页版PHP网站源码&#xff0c;PHP在线照片图片处理PS网站程序源码photoshop网页版。 有很多朋友们都是在用PS作图的&#xff0c;众所周知在使用和学习PS时是需要下载软件的&#xff0c;Photoshop软件对电脑配置也是有一定要求的&#xff0c;今天就为大家带来一…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...