当前位置: 首页 > news >正文

深度视觉目标跟踪进展综述-论文笔记

中科大学报上的一篇综述,总结得很详细,整理了相关笔记。

1    引言

目标跟踪旨在基于初始帧中指定的感兴趣目标( 一般用矩形框表示) ,在后续帧中对该目标进行持续的定位。

基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。

处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。

最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。

基于双路网络跟踪算法那,将跟踪视为模板匹配,抗干扰能力较差。

近期基于Transformer的深度跟踪器使用注意力机制,取得了领先的性能。

2    跟踪数据集发展趋势

数据、算法和算力是人工智能最重要的三个要素,是人工智能的三个基石。

3    深度跟踪算法

3.1    深度相关滤波器跟踪

相关滤波器( correlation filter,CF) 通过学习一个具有区分力的滤波器来处理待跟踪的图片,其输出结果为一个响应图,表示目标在后续帧中不同位置的置信度.

在早期的工作中,研究人员探索如何将离线训练好的深度特征(如利用ImageNet预训练的 VGG模型)与相关滤波器进行结合。本质就是将HOG等手工特征替换成神经网络提取的特征。

深度学习提取特征的特点是,高层的语义特征对于目标的抽象表达能力很强,而低层的模型特征擅长刻画目标的纹理、形状等底层信息.

HCF算法的示意图,融合了不同层次的深度特征。

得益于相关滤波器的闭合解,研究人员尝试将滤波器和深度特征提取网络进行联合训练,等于是深度特征从离线获取升级到联合训练。

CFNet算法的架构,就是采用联合训练的模式。

3.2    基于分类的深度跟踪器

基于分类的深度跟踪方法受经典的目标检测框架R-CNN的启发,将目标跟踪任务视为二分类( 目标和背景) 任务。

对每个视频,分别训练独立的分类层(最后一个全连接层)用于区分当前视频域中的目标和干扰物.

3.3双路网络跟踪算法

双路网络框架(SiamFC),此方法利用卷积网络提取目标模板和搜索区域的特征,然后再进性相关操作生成响应图,其中响应图上的峰值点就是目标所在的位置。

在此之后,考虑到SiamFC对目标尺度的回归仍然采用传统缩放形式不能准确地获得目标的尺度信息。

SiamRPN ++解决了边界填充问题,也使用了多层次特征融合的方法。

尽管以上的双路网络方法在视频目标跟踪中取得了很大的成功,但是仍然存在缺陷,缺少在线更新过程.MemTrack、Meta-Tracker、Re2EMA、UpdateNet和GradNet等, 提出了不同的模板更新算法。

3.4基于梯度优化的深度跟踪方法

CREST的该卷积核和搜索图片的特征图进行卷积,可以生成响应图用于目标跟踪,有点模版匹配的味道。

3.5基于Transformer的深度跟踪方法

Transformer的核心模块是注意力机制,可以将全局信息聚合到需要的位置.

4展望

如何设计适合他们的轻量级模型,例如使用神经网络搜索的方式来获得更优的模型结构,以兼顾低内存消耗和高精度具有重要的研究价值。总之就是平衡精度与模型复杂度之间矛盾。

5结论

虽然深度学习算法取得了令人瞩目的成绩,但与此同时带来的跟踪效率限制和模型存储消耗等问题仍需进一步完善.

相关文章:

深度视觉目标跟踪进展综述-论文笔记

中科大学报上的一篇综述,总结得很详细,整理了相关笔记。 1 引言 目标跟踪旨在基于初始帧中指定的感兴趣目标( 一般用矩形框表示) ,在后续帧中对该目标进行持续的定位。 基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类…...

【数据结构:顺序表】

文章目录 线性表顺序表1.1 顺序表结构的定义1.2 初始化顺序表1.3 检查顺序表空间1.4 打印1.5 尾插1.6 头插1.7 尾删1.8 头删1.9 查找1.10 指定位置插入1.11 删除指定位置数据1.12 销毁顺序表 数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一…...

android tts播报破音解决方案汇总

导航app引导中经常遇到破音,这里也将之前经历过的方案收集以下,方便以后选择: 1 对于开始和结尾破音: 可以用升降音来处理 两种方式 一种是 直接对开始和结束的时间段进行音量直接渐进改变。这里配的是200ms的渐变。 VolumeSha…...

2024年新提出的算法:一种新的基于数学的优化算法——牛顿-拉夫森优化算法|Newton-Raphson-based optimizer,NRBO

1、简介 开发了一种新的元启发式算法——Newton-Raphson-Based优化器(NRBO)。NRBO受到Newton-Raphson方法的启发,它使用两个规则:Newton-Raphson搜索规则(NRSR)和Trap Avoidance算子(TAO&#…...

笔记 | Clickhouse 命令行连接及查询

在 ClickHouse 中,可以使用命令行客户端执行查询。默认情况下,ClickHouse 的命令行客户端称为 clickhouse-client。下面是一些基本的步骤和示例,用于使用 clickhouse-client 进行查询。 首先,需要确保已经安装了 ClickHouse 服务…...

设计模式—行为型模式之责任链模式

设计模式—行为型模式之责任链模式 责任链(Chain of Responsibility)模式:为了避免请求发送者与多个请求处理者耦合在一起,于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链;当有请求发生时&am…...

如何使用Python+Flask搭建本地Web站点并结合内网穿透公网访问?

文章目录 前言1. 安装部署Flask并制作SayHello问答界面2. 安装Cpolar内网穿透3. 配置Flask的问答界面公网访问地址4. 公网远程访问Flask的问答界面 前言 Flask是一个Python编写的Web微框架,让我们可以使用Python语言快速实现一个网站或Web服务,本期教程…...

【C语言】【力扣】刷题小白的疑问

一、力扣做题时的答案&#xff0c;没有完整的框架 疑问&#xff1a; 在学习C语言的初始&#xff0c;就知道C语言程序离不开下面这个框架&#xff0c;为什么力扣题的解答往往没有这个框架&#xff1f; #include <stdio.h>int main() {return 0; } 解答&#xff1a; 力扣平…...

【Python】03快速上手爬虫案例三:搞定药师帮

文章目录 前言1、破解验证码2、获取数据 前言 提示&#xff1a;通过用户名、密码、搞定验证码&#xff0c;登录进药师帮网站&#xff0c;然后抓取想要的数据。 爬取数据&#xff0c;最终效果图&#xff1a; 1、破解验证码 使用药师帮测试系统&#xff1a;https://dianrc.ysb…...

C++异步编程

thread std::thread 类代表一个单独的执行线程。在创建与线程对象相关联时&#xff0c;线程会立即开始执行&#xff08;在等待操作系统调度的延迟之后&#xff09;&#xff0c;从构造函数参数中提供的顶层函数开始执行。顶层函数的返回值被忽略&#xff0c;如果它通过抛出异常…...

dfs专题(记忆化搜索)P1141 01迷宫——洛谷(题解)

题目描述 有一个仅由数字 00 与 11 组成的 &#xfffd;&#xfffd;nn 格迷宫。若你位于一格 00 上&#xff0c;那么你可以移动到相邻 44 格中的某一格 11 上&#xff0c;同样若你位于一格 11 上&#xff0c;那么你可以移动到相邻 44 格中的某一格 00 上。 你的任务是&#…...

pip 安装出现报错 SSLError(SSLError(“bad handshake

即使设置了清华源&#xff1a; pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip 安装包不能配置清华源&#xff0c;出现报错: Retrying (Retry(total2, connectNone, readNone, redirectNone, statusNone)) after connection broken by ‘SSLE…...

新概念英语第二册(46)

【New words and expressions】生词和短语&#xff08;12&#xff09; unload v. 卸&#xff08;货&#xff09; wooden adj. 木制的 extremely adv. 非常&#xff0c;极其 occur …...

动态规划入门题目

动态规划&#xff08;记忆化搜索&#xff09;&#xff1a; 将给定问题划分成若干子问题&#xff0c;直到子问题可以被直接解决。然后把子问题的答保存下来以免重复计算&#xff0c;然后根据子问题反推出原问题解的方法 动态规划也称为递推&#xff08;暴力深搜记忆中间状态结果…...

探索云性能测试的各项功能有哪些?

云性能测试作为现代软件开发和部署过程中不可或缺的一环&#xff0c;为确保系统在各种条件下的高效运行提供了关键支持。本文将介绍云性能测试的各项功能&#xff0c;帮助您更好地了解其在软件开发生命周期中的重要性。 1. 负载测试 云性能测试的首要功能之一是负载测试。通过模…...

(大众金融)SQL server面试题(1)-总销售量最少的3个型号的车及其总销售量

今天&#xff0c;面试了一家公司&#xff0c;什么也不说先来三道面试题做做&#xff0c;第一题。 那么&#xff0c;我们就开始做题吧&#xff0c;谁叫我们是打工人呢。 题目是这样的&#xff1a; 统计除豪车外&#xff0c;销售最差的车 车辆按批销售&#xff0c;每次销售若干…...

Git安装,Git镜像,Git已安装但无法使用解决经验

git下载地址&#xff1a; Git - 下载 (git-scm.com) <-git官方资源 Git for Windows (github.com) <-github资源 CNPM Binaries Mirror (npmmirror.com) <-阿里镜像&#xff08;推荐&#xff0c;镜…...

Python与CAD系列高级篇(二十五)分类提取坐标到excel(补充圆半径、线长度、圆弧)

目录 0 简述1 分类提取坐标到excel2 结果展示0 简述 上一篇中介绍了:对点、直线、多段线、圆、样条曲线分类读取坐标并提取到excel。考虑到进一步提取图形信息,此篇补充对圆半径、线长度以及圆弧几何信息的提取。 1 分类提取坐标到excel 代码实现: import math import nump…...

Linux安装Influxdb

Linux安装Influxdb 1、安装步骤1.1、安装Influxdb步骤1.2、Influxdb默认安装路径1.3、命令行操作Influxdb&#xff0c;建库&#xff0c;建用户1.3.1 进入influxdb命令行1.3.2 创建用户1.3.2 库查询和创建 1、安装步骤 1.1、安装Influxdb步骤 yum install -y wget #下载安装包…...

Flutter CustomPainter 属性介绍与使用

Flutter 中的 CustomPainter 是一个强大的工具&#xff0c;允许开发者通过自定义绘制来创建各种复杂的图形和动画。本文将介绍 CustomPainter 的一些重要属性以及如何使用它们来实现自定义绘制。 1. CustomPainter 简介 CustomPainter 是一个抽象类&#xff0c;用于自定义绘制…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...