当前位置: 首页 > news >正文

分布式场景怎么Join

背景

最近在阅读查询优化器的论文,发现System R中对于Join操作的定义一般分为了两种,即嵌套循环、排序-合并联接。

考虑到我的领域是在处理分库分表或者其他的分区模式,这让我开始不由得联想我们怎么在分布式场景应用这个Join逻辑,对于两个不同库里面的不同表我们是没有办法直接进行Join操作的。查阅资料后发现原来早有定义,即分布式联接算法。

分布式联接算法

跨界点处理数据即分布式联接算法,常见的有四种模型:Shuffle Join(洗牌联接)、Broadcast Join(广播联接)、MapReduce Join(MapReduce联接)、Sort-Merge Join(排序-合并联接)。

接下来将进行逐一了解与分析,以便后续开发的应用。

Shuffle Join(洗牌联接)

先上原理解释:

Shuffle Join的核心思想是将来自不同节点的数据重新分发(洗牌),使得可以联接的数据行最终位于同一个节点上。

通常,对于要联接的两个表,会对联接键应用相同的哈希函数,哈希函数的结果决定了数据行应该被发送到哪个节点。这样,所有具有相同哈希值的行都会被送到同一个节点,然后在该节点上执行联接操作。

可能解释完还是有点模糊,举个例子,有两张表,分别以id字段进行分库操作,且哈希算法相同(为了简单,这里只介绍分库场景,分库分表同理。算法有很多种,这里举例是hash算法),那么这两张表的分片或许可以在同一个物理库中,这样我们不需要做大表维度的处理,我们可以直接下推Join操作到对应的物理库操作即可。

在ShardingSphere中,这种场景类似于绑定表的定义,如果两张表的算法相同,可以直接配置绑定表的关系,进行相同算法的连接查询,避免复杂的笛卡尔积。

这样做的好处是可以尽量下推到数据库操作,在中间件层面我们可以做并行处理,适合大规模的数据操作。

但是,这很理想,有多少表会采用相同算法处理呢。

Broadcast Join(广播联接)

先上原理解释:

当一个表的大小相对较小时,可以将这个小表的全部数据广播到所有包含另一个表数据的节点上。

每个节点上都有小表的完整副本,因此可以独立地与本地的大表数据进行联接操作,而不需要跨节点通信。

 举个例子,有一张非常小的表A,还有一张按照ID分片的表B,我们可以在每一个物理库中复制一份表A,这样我们的Join操作就可以直接下推到每一个数据库操作了。

这种情况比Shuffle Join甚至还有性能高效,这种类似于ShardingSphere中的广播表的定义,其存在类似于字典表,在每一个数据库都同时存在一份,每次写入会同步到多个节点。

这种操作的好处显而易见,不仅支持并行操作而且性能极佳。

但是缺点也显而易见,如果小表不够小数据冗余不说,广播可能会消耗大量的网络带宽和资源。

MapReduce Join(MapReduce联接)

先上原理解释:

MapReduce是一种编程模型,用于处理和生成大数据集,其中的联接操作可以分为两个阶段:Map阶段和Reduce阶段。

  • Map阶段:每个节点读取其数据分片,并对需要联接的键值对应用一个映射函数,生成中间键值对。
  • Reduce阶段
    • 中间键值对会根据键进行排序(在某些实现中排序发生在Shuffle阶段)和分组,然后发送到Reduce节点。
    • 在Reduce节点上,具有相同键的所有值都会聚集在一起,这时就可以执行联接操作。

MapReduce Join不直接应用于传统数据库逻辑,而是适用于Hadoop这样的分布式处理系统中。但是为了方便理解,还是用SQL语言来分析,例如一条SQL:

SELECT orders.order_id, orders.date, customers.name
FROM orders
JOIN customers ON orders.customer_id = customers.customer_id;

会被转换为两个SQL:

SELECT customer_id, order_id, date FROM orders;
SELECT customer_id, name FROM customers;

这个过程就是Map阶段,即读取orderscustomers表的数据,并为每条记录输出键值对,键是customer_id,值是记录的其余部分。

下一个阶段可有可无,即Shuffle阶段。如果不在这里排序可能会在Map阶段执行SQL时候排序/分组或者在接下来的Reduce阶段进行额外排序/分组。在这个阶段主要将收集到的数据按照customer_id排序分组,以确保相同的customer_id的数据达到Reduce阶段。

Reduce阶段将每个对应的customer_id进行联接操作,输出并返回最后的结果。

这种操作普遍应用于两个算法完全不相同的表单,也是一种标准的处理模型,在这个过程中,我们以一张逻辑表的维度进行操作。这种算法可能会消耗大量内存,甚至导致内存溢出,并且在处理大数据量时会相当耗时,因此不适合需要低延迟的场景。

额外补充

内存溢出场景普遍在如下场景:

  1. 大键值对数量:如果Map阶段产生了大量的键值对,这些数据需要在内存中进行缓存以进行排序和传输,这可能会消耗大量内存。

  2. 数据倾斜:如果某个键非常常见,而其他键则不那么常见,那么处理这个键的Reducer可能会接收到大量的数据,导致内存不足。这种现象称为数据倾斜。

  3. 大值列表:在Reduce阶段,如果某个键对应的值列表非常长,处理这些值可能会需要很多内存。

  4. 不合理的并行度:如果Reduce任务的数量设置得不合适(太少或太多),可能会导致单个任务处理不均匀,从而导致内存问题。

我能想到的相应解决方案:

  • 内存到磁盘的溢写:当Map任务的输出缓冲区满了,它会将数据溢写到磁盘。这有助于限制内存使用,但会增加I/O开销。

  • 通过设置合适的Map和Reduce任务数量,可以更有效地分配资源,避免某些任务过载。具体操作可以将Map操作的分段比如1~100,100~200,Reduce阶段开设较少的并发处理。

  • 优化数据分布,比如使用范围分区(range partitioning)或哈希分区(hash partitioning)来减少数据倾斜。

Sort-Merge Join(排序-合并联接)

先上原理解释:

在分布式环境中,Sort-Merge Join首先在每个节点上对数据进行局部排序,然后将排序后的数据合并起来,最后在合并的数据上执行联接操作。

这通常涉及到多阶段处理,包括局部排序、数据洗牌(重新分发),以及最终的排序和合并。

举个理解,还是上面的SQL。

SELECT orders.order_id, orders.date, customers.name
FROM orders
JOIN customers ON orders.customer_id = customers.customer_id;
  1. orders表按customer_id进行排序。
  2. customers表按customer_id进行排序。
  3. 同时遍历两个已排序的表,将具有相同customer_id的行配对。

这个就有点类似于原生的排序-合并联接了。也是数据库场景的标准处理办法。

对于已经排序的数据集或数据分布均匀的情况,这种方法非常有效。如果数据未预先排序,这种方法可能会非常慢,因为它要求数据在联接之前进行排序。

当然,这个算法也会造成内存溢出的场景,解决方案如下:

  1. 当数据集太大而无法一次性加载到内存中时,可以使用外部排序算法。外部排序算法会将数据分割成多个批次,每个批次单独排序,然后将排序后的批次合并。这种方法通常涉及到磁盘I/O操作,因此会比内存中操作慢。
  2. 对于合并步骤,可以使用流式处理技术,一次只处理数据的一小部分,并持续将结果输出到下一个处理步骤或存储系统。这样可以避免一次性加载大量数据到内存中。
  3. 当内存不足以处理数据时,可以使用磁盘空间作为临时存储。数据库管理系统通常有机制来处理内存溢出,比如创建磁盘上的临时文件来存储过程中的数据。
  4. 在分布式系统中,可以将数据分散到多个节点上进行处理,这样每个节点只需要处理数据的一部分,从而减少单个节点上的内存压力。

相关文章:

分布式场景怎么Join

背景 最近在阅读查询优化器的论文,发现System R中对于Join操作的定义一般分为了两种,即嵌套循环、排序-合并联接。 考虑到我的领域是在处理分库分表或者其他的分区模式,这让我开始不由得联想我们怎么在分布式场景应用这个Join逻辑&#xff…...

springboot2.7继承swagger knif4j

maven pom依赖 <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-openapi2-spring-boot-starter</artifactId><version>4.4.0</version></dependency> yml配置 knife4j:enable: trueopenapi:title: …...

C++ 实现单例模式

单例模式 单例模式确保一个类只有一个实例&#xff0c;并提供一个全局访问点。 创建单一实例 怎么让某个类只能创建一个实例&#xff1f; 思路&#xff1a;将类的构造函数私有&#xff0c;然后提供一个静态方法访问对象。调用类内成员函数需要对象&#xff0c;但我们又无法…...

Java多线程--线程安全问题练习题

文章目录 &#xff08;1&#xff09;练习题1&#xff08;2&#xff09;练习题2&#xff08;3&#xff09;练习题3 现在咱们线程一共说了这么几件事情&#xff0c;如下&#xff1a; 具体文章见专栏。 接下来看几个练习题吧。 &#xff08;1&#xff09;练习题1 &#x1f30b;题…...

PHY6252低成本Mesh组网蓝牙芯片

超低成本MESH组网蓝牙芯片PHY6252蓝牙Mesh组网简介 蓝⽛Mesh⽹络使⽤&#xff0c;依赖于低功耗蓝⽛(BLE)。低功耗蓝⽛技术是蓝⽛Mesh使用的无线通信协议栈&#xff0c;蓝牙BR/EDR能够与实现一台设备到另一台设备的连接和通信&#xff0c;建立“一对一”的关系&#xff0c;大多数…...

红外图像中两点校正的增益系数与偏置系数的计算公式推导

增益系数&#xff08;K&#xff09; 根据两个温度下的响应值&#xff0c;可求得各响应单元的响应曲线&#xff08;即斜率&#xff09;&#xff0c;累加所有曲线的斜率求平均斜率值。 平均斜率值与各响应单元的斜率的比值即为该单元的K增益系数。结论&#xff1a;某单元的增益系…...

C++/MFC:在窗体Form(Dialog)中多个编辑框时,在输入时将回车解释为TAB键,将输入焦点移到下一个编辑框的方法

很多时候&#xff0c;为了输入方便&#xff0c;常用的做法&#xff0c;就是将回车键解释为将输入焦点移动到下一个编辑框中。就像是我的VxTerm中的快速连接输入一样&#xff1a; VxTerm是一个国产化替代的SSH工具&#xff0c;可以从本站的资源中免费下载并且免费使用&#xff…...

鸿蒙南向开发——GN快速入门指南

运行GN(Generate Ninja) 运行gn&#xff0c;你只需从命令行运行gn&#xff0c;对于大型项目&#xff0c;GN是与源码一起的。 对于Chromium和基于Chromium的项目&#xff0c;有一个在depot_tools中的脚本&#xff0c;它需要加入到你的PATH环境变量中。该脚本将在包含当前目录的…...

PyCharm常用快捷键和设置

Ctrl Space 基本的代码完成&#xff08;类、方法、属性&#xff09; Ctrl Alt Space 快速导入任意类 Ctrl Shift Enter 语句完成 Ctrl P 参数信息&#xff08;在方法中调用参数&#xff09; Ctrl Q 快速查看文档 F1 外部文档 Shift F1 外部文档…...

Unity - 调节camera物理相机参数(HDRP)

在 “Hierarchy” 右键 -> Volume -> Global Volume new 一个 profile, 设置Mode为Pysical Camera 再点击camera组件&#xff0c;这时候设置 ISO、Shutter Speed、Aperture等参数值还会有效。...

@JsonIgnore的使用及相关问题的解决

目录 1 前言 2 对比及其使用方法 3 遇到的相关问题及解决方法 1 前言 在我们编写的后端项目中&#xff0c;有时候可能需要将某个实体类以JSON格式传送给前端&#xff0c;但是其中可能有部分内容我们并不想传送&#xff0c;这时候我们选择将这部分内容变成Null&#xff0c;这…...

万户 ezOFFICE SendFileCheckTemplateEdit.jsp SQL注入漏洞

0x01 产品简介 万户OA ezoffice是万户网络协同办公产品多年来一直将主要精力致力于中高端市场的一款OA协同办公软件产品,统一的基础管理平台,实现用户数据统一管理、权限统一分配、身份统一认证。统一规划门户网站群和协同办公平台,将外网信息维护、客户服务、互动交流和日…...

自建DNS劫持服务器,纯内网劫持PS5,屏蔽更新,自动hen

背景&#xff1a;目前PS5首次折腾必须要连外网&#xff0c;还要改DNS&#xff0c;除非使用ESP8266/32&#xff0c; 本文的方法是完全不改DNS&#xff0c;不使用ESP8266,不连接外网的情况下自动折腾 能实现什么&#xff1a; 1.折腾全程不连接外网 2.完全自建hen服务器&#xff…...

C语言王道第八周一题

Description 初始化顺序表&#xff08;顺序表中元素为整型&#xff09;&#xff0c;里边的元素是 1,2,3&#xff0c;然后通过 scanf 读取一个元素&#xff08;假如插入的是 6&#xff09;&#xff0c;插入到第 2 个位置&#xff0c;打印输出顺序表&#xff0c;每个 元素占 3 个…...

探索1688店铺所有商品API接口:一键获取海量数据,开启商业智能新篇章

1688店铺所有商品API接口技术详解 一、概述 1688店铺所有商品API接口是阿里巴巴提供的一套应用程序接口&#xff0c;允许第三方开发者获取指定1688店铺下的所有商品信息。通过使用这个接口&#xff0c;开发者可以获取到店铺内所有商品的列表、详情、属性等信息&#xff0c;从…...

使用Win32API实现贪吃蛇小游戏

目录 C语言贪吃蛇项目 基本功能 需要的基础内容 Win32API 介绍 控制台程序部分指令 设置控制台窗口的长宽 设置控制台的名字 控制台在屏幕上的坐标位置结构体COORD 检索指定标准设备的句柄&#xff08;标准输入、标准输出或标准错误&#xff09; 光标信息结构体类型CONSOLE_CUR…...

力扣0114——二叉树展开为链表

[二叉树展开为链表] 难度&#xff1a;中等 题目描述 给你二叉树的根结点 root &#xff0c;请你将它展开为一个单链表&#xff1a; 展开后的单链表应该同样使用 TreeNode &#xff0c;其中 right 子指针指向链表中下一个结点&#xff0c;而左子指针始终为 null 。展开后的单…...

FPGA硬件架构

1.Xilinx FPGA是异构计算平台&#xff08;所谓异构&#xff0c;就是有很多不同的部分组成&#xff09;&#xff1a;CLB,BRAM,DSP 2. 软核&#xff1a; 把经过功能验证的、可综合的、实现后电路结构总门数在五千门以上的Verilog HDL模型称为软核(soft core)。 硬核: 把在某一…...

spring boot 嵌入chatGPT步骤

一、需要良好的网络 二、需要在OpenAI官网https://openai.com/注册用户&#xff0c;并获取一个api-key&#xff0c;sk开头的 验证是否可用网站&#xff1a;http://tools.lbbit.top/check_key_valid/ 三、spring boot 配置文件 openai.proxyHost127.0.0.1 openai.proxyPort7890…...

博云科技与中科可控全面合作,探索前沿金融科技新机遇

2024年1月26日&#xff0c;博云科技与中科可控在昆山高新区成功举办合作签约仪式。昆山市委常委、昆山高新区党工委书记孙道寻、中科可控董事长聂华、博云科技董事长花磊等领导出席了本次签约仪式。 中科可控将利用其在先进计算和智造领域的优势&#xff0c;为博云科技提供有关…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...