当前位置: 首页 > news >正文

PyTorch复现网络模型VGG

VGG

  1. 原论文地址:https://arxiv.org/abs/1409.1556
  2. VGGVisual Geometry Group(视觉几何组)的缩写,它是一个在计算机视觉领域中非常有影响力的研究团队,主要隶属于牛津大学的工程系和科学系。VGG以其对卷积神经网络(Convolutional Neural Networks, CNNs)结构的研究而闻名,特别是在ILSVRCImageNet Large Scale Visual Recognition Challenge)竞赛中取得了显著的成绩。
    VGG网络是VGG团队提出的一系列深度卷积神经网络模型,其中最著名的是VGG-16VGG-19。这些模型以其简洁的架构和强大的性能而受到广泛关注。VGG网络的主要特点包括:
    (1)使用小尺寸的卷积核(3x3)和最大池化层(2x2)来构建深度网络。
    (2)通过堆叠多个小卷积核来模拟大尺寸卷积核的感受野,同时减少参数数量。
    (3)在整个网络中保持卷积核尺寸和步长的一致性,使得网络结构更加规整。
    (4)使用多个全连接层进行分类任务的输出。
    VGG网络的性能在2014年当时是非常出色的,成为了计算机视觉任务中的基准模型之一。虽然现在有一些更先进的网络架构(如ResNetDenseNet等)已经超越了VGG在某些方面的性能,但VGG仍然是一个值得学习和了解的经典模型。

感受野

(1)感受野(Receptive Field)是卷积神经网络(Convolutional Neural Networks, CNNs)中的一个重要概念,它指的是网络内部的不同位置的神经元对原图像的感受范围的大小。在卷积神经网络中,每个神经元都只与输入数据的一个局部区域相连,这个局部区域就是该神经元的感受野。随着网络层次的加深,每个神经元对于输入数据的感受野会逐渐扩大,从而能够提取更加抽象和全局的特征。
(2) 感受野的大小可以通过计算得到,它与卷积核的大小、步长(stride)和填充(padding)等超参数有关。在一般的卷积神经网络中,感受野的大小会随着卷积层的加深而指数级增长。因此,深层卷积神经网络中的神经元可以具有非常大的感受野,能够覆盖输入图像的大部分区域甚至整个图像。
在这里插入图片描述

VGG网络结构

  1. 论文中介绍,从A-E,分别有11、11、13、16、16、19层,用的比较多的是VGG-16模型和VGG-19模型。
  2. VGG-16模型包括13层卷积层和3层全连接层。
    在这里插入图片描述
  3. 视频中截取的模型结构图
    在这里插入图片描述
  4. 根据论文画出网络模型图,13个卷积层和3个全连接层。
    在这里插入图片描述

网络模型复现代码

# 定义训练网络 VGG-16
import torch
from torch import nn
from torch.nn import functional as F
from torchinfo import summaryclass VGG16(nn.Module):def __init__(self):super().__init__()# 定义网络结构# conv1self.conv1 = nn.Conv2d(3, 64, 3, padding=1)self.conv2 = nn.Conv2d(64, 64, 3, padding=1)self.pool1 = nn.MaxPool2d(2)# conv2self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.conv4 = nn.Conv2d(128, 128, 3, padding=1)self.pool2 = nn.MaxPool2d(2)# conv3self.conv5 = nn.Conv2d(128, 256, 3, padding=1)self.conv6 = nn.Conv2d(256, 256, 3, padding=1)self.conv7 = nn.Conv2d(256, 256, 3, padding=1)self.pool3 = nn.MaxPool2d(2)# conv4self.conv8 = nn.Conv2d(256, 512, 3, padding=1)self.conv9 = nn.Conv2d(512, 512, 3, padding=1)self.conv10 = nn.Conv2d(512, 512, 3, padding=1)self.pool4 = nn.MaxPool2d(2)# conv5self.conv11 = nn.Conv2d(512, 512, 3, padding=1)self.conv12 = nn.Conv2d(512, 512, 3, padding=1)self.conv13 = nn.Conv2d(512, 512, 3, padding=1)self.pool5 = nn.MaxPool2d(2)# fc1self.lr1 = nn.Linear(7 * 7 * 512, 4096)# fc2self.lr2 = nn.Linear(4096, 4096)# fc3self.lr3 = nn.Linear(4096, 1000)def forward(self, x):x = F.relu(self.conv1(x))x = self.pool1(F.relu(self.conv2(x)))x = F.relu(self.conv3(x))x = self.pool2(F.relu(self.conv4(x)))x = F.relu(self.conv5(x))x = F.relu(self.conv6(x))x = self.pool3(F.relu(self.conv7(x)))x = F.relu(self.conv8(x))x = F.relu(self.conv9(x))x = self.pool4(F.relu(self.conv10(x)))x = F.relu(self.conv11(x))x = F.relu(self.conv12(x))x = self.pool5(F.relu(self.conv13(x)))x = x.view(-1, 7 * 7 * 512)  # 铺平x = F.relu(self.lr1(F.dropout(x, p=0.5)))x = F.relu(self.lr2(F.dropout(x, p=0.5)))output = F.softmax(self.lr3(x), dim=1)vgg = VGG16()
# 网络结构可视化
summary(vgg, input_size=(10, 3, 224, 224))
  1. Pycharm运行输出结果,可以可视化VGG的网络结构和运行信息。
    在这里插入图片描述
  2. 代码仓库:deeplearning

网络结构可视化torchinfo

  1. 介绍
    torchinfo是一个用于PyTorch模型信息打印的Python包。它提供了一种简单而快速的方法来打印PyTorch模型的参数数量、计算图和内存使用情况等有用的信息,从而帮助深度学习开发人员更好地理解和优化他们的模型。具体来说,torchinfo可以用于打印网络的每一层尺寸等信息,使得开发人员能够更清晰地了解模型的结构和参数。
    例如,使用torchinfo库的summary函数,可以轻松地打印出模型的结构信息,包括每一层的名称、类型、输出形状和参数数量等。这对于调试模型、优化模型结构以及进行模型剪枝等操作都非常有帮助。
    总的来说,torchinfo是一个非常实用的工具,可以帮助PyTorch开发人员更好地理解和优化他们的模型。
    ——【文心一言】
  2. 安装:conda install -c conda-forge torchinfo (或pip install torchinfo

参考

  1. 使用Pytorch复现经典网络架构VGG_哔哩哔哩_bilibili
  2. PyTorch复现网络模型VGG

相关文章:

PyTorch复现网络模型VGG

VGG 原论文地址:https://arxiv.org/abs/1409.1556VGG是Visual Geometry Group(视觉几何组)的缩写,它是一个在计算机视觉领域中非常有影响力的研究团队,主要隶属于牛津大学的工程系和科学系。VGG以其对卷积神经网络&am…...

Springboot集成Javamelody

JavaMelody的目标是监视QA和生产环境中的Java或Java EE应用服务器。它不是模拟用户请求的工具,而是根据用户对应用程序的使用情况来衡量和计算应用程序实际操作的统计信息的工具。JavaMelody主要基于请求统计和演化图。 它允许改进QA和生产中的应用程序&#xff0c…...

如何将 h5 页面快速转换成微信小程序

Hello各位朋友们大家新的一月好呀!我是咕噜铁蛋!我知道在小程序开发中,有时候需要将H5页面转换成微信小程序页面。这样可以将原本的网页内容适配到小程序中,让用户能够更方便地访问和使用。在本文中,我将分享如何快速将…...

在Vue的模块开发中使用GPT的体验及总结

我这一周都在忙着实现一个页面,这个页面是通过vue基于element-ui来实现的。在这个过程中,我把页面拆分成多个组件,而组件的生成是通过Chat-GPT3来实现的。 这又是一次使用AI来协同开发的体验,觉得有必要总结一下: 遵循…...

Java常见算法题解析面试题(中)

11.判断101-200之间有多少个素数,并输出所有素数。【重点】 程序分析:判断素数的方法,用一个数分别去除2到sqrt(这个数),如果能被整除,则表明此数不是素数,反之是素数。 public class lianxi { publi…...

提升网站性能的秘诀:为什么Nginx是高效服务器的代名词?

在这个信息爆炸的时代,每当你在浏览器中输入一个网址,背后都有一个强大的服务器在默默地工作。而在这些服务器中,有一个名字你可能听说过无数次——Nginx。今天,就让我们一起探索这个神奇的工具。 一、Nginx是什么 Nginx&#x…...

[Python图像处理] 使用OpenCV创建深度图

使用OpenCV创建深度图 双目视觉创建深度图相关链接双目视觉 在传统的立体视觉中,两个摄像机彼此水平移动,用于获得场景上的两个不同视图(作为立体图像),就像人类的双目视觉系统: 通过比较这两个图像,可以以视差的形式获得相对深度信息,该视差编码对应图像点的水平坐标的…...

vue+element 换肤功能

1.首先建深色和浅色两个主题样式变量样式表,样式表名和按钮中传入的值一样,本例中起名为default.scss和dark.scss 2.在data中定义主题变量名 zTheme:‘defalut’,默认引用defalut.scss, 在点击按钮时切换引用的样式表,达到换肤效果…...

python魔法函数[全面]

1、init 用于初始化对象的属性和状态 当创建一个对象时,Python会自动调用该对象的__init__方法。 这个方法用于初始化对象的属性和状态,是对象创建过程中的一个重要环节 2、new # 通常我们不需要重写__new__方法,除非我们正在进行一些非常…...

python实现贪吃蛇小游戏(附源码)

文章目录 导入所需的模块坐标主游戏循环模块得分 贪吃蛇小游戏,那个曾经陪伴着00后和90后度过无数欢笑时光的熟悉身影,仿佛是一把打开时光之门的钥匙。它不仅是游戏世界的经典之一,更是我们童年岁月中不可或缺的一部分,一个承载回…...

爬虫学习笔记-Cookie登录古诗文网

1.导包请求 import requests 2.获取古诗文网登录接口 url https://so.gushiwen.cn/user/login.aspxfromhttp%3a%2f%2fso.gushiwen.cn%2fuser%2fcollect.aspx # 请求头 headers {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like …...

Linux网络状态查看与防火墙管理

网络状态查看 netstat [选项] Netstat是一款命令行工具,用于显示Linux系统中网络的状态信息,可以显示网络连接、路由表、连接的数据统计等信息。 使用 选项 -a:显示所有选项,包括监听和未监听的端口。 -t:仅显示tc…...

VxTerm:C++ MFC,在工具栏中增加Edit/ComboBox等组件,打造一个地址栏/搜索栏功能

VxTerm软件可以在本站链接下载:唯一国产化SSH工具下载,单文件纯绿色不需要安装,替代SecureCRT 在软件的主界面中,增加了一个地址栏功能。 本人的文章内容都是经本人亲自实现并验证成功的干货,关注我,互相交…...

【Android】屏幕锁

屏幕锁,就是锁住屏幕不让用户误触摸,从开发者的角度看就是不响应用户的点击事件。 屏幕锁界面 可以自己创建一个布局文件,或者直接创建一个View(例如ImageView)。 参数LayoutParams mLayoutParams new LayoutParam…...

springCloud gateway 防止XSS漏洞

springCloud gateway 防止XSS漏洞 一.XSS(跨站脚本)漏洞详解1.XSS的原理和分类2.XSS漏洞的危害3.XSS的防御 二.Java开发中防范XSS跨站脚本攻击的思路三.相关代码(适用于spring cloud gateway)1.CacheBodyGlobalFilter.java2.XssRequestGlobalFilter.java…...

美赛摘要写作重点

摘要是论文最重要的部分。竞赛要求每篇论文的首页为摘要页,如果摘要写得不好,即使有好的模型和解答,论文也将难以通过鉴别阶段的初审而进入下一阶段。 根据MCM的竞赛规则,摘要应该包含以下内容: 赛题重述与阐明&#…...

RUST笔记: 动态链接库的创建和使用

生成动态链接库 // https://github.com/vvvm23/funny-shapes # 项目元信息 [package] name "funnyshapes" # 项目名称 version "0.1.0" # 版本号 edition "2021" # Rust语言版本# 更多配置信息可查阅&#xff1…...

「阿里云」幻兽帕鲁个人服务器已上线,3分钟快速搭建

基于阿里云搭建幻兽帕鲁服务器方法,1到2分钟部署完成,稳定运行无卡顿,阿里云服务器网aliyunfuwuqi.com分享保姆级手把手教程,基于阿里云计算巢、云服务器或无影云桌面都可以: 基于阿里云幻兽帕鲁服务器创建教程 基于…...

@ 代码随想录算法训练营第6周(C语言)|Day36(贪心)

代码随想录算法训练营第6周(C语言)|Day36(贪心) Day36、贪心(包含题目 ● 435. 无重叠区间 ● 763.划分字母区间 ● 56. 合并区间 ) 435. 无重叠区间 题目描述 给定一个区间的集合,找到需要…...

数组打印杨辉三角

签名:但行好事,莫问前程。 文章目录 前言一、杨辉三角的概念二、二维数组打印杨辉三角1、创建二维数组2、使用for循环,初始化外层元素3、给数组赋值3.1给数组每行首末元素赋值为13.1给数组每行非首末元素赋值 三、杨辉三角全代码总结 前言 记…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

Android屏幕刷新率与FPS(Frames Per Second) 120hz

Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数&#xff0c;单位是赫兹&#xff08;Hz&#xff09;。 60Hz 屏幕&#xff1a;每秒刷新 60 次&#xff0c;每次刷新间隔约 16.67ms 90Hz 屏幕&#xff1a;每秒刷新 90 次&#xff0c;…...

【Zephyr 系列 16】构建 BLE + LoRa 协同通信系统:网关转发与混合调度实战

🧠关键词:Zephyr、BLE、LoRa、混合通信、事件驱动、网关中继、低功耗调度 📌面向读者:希望将 BLE 和 LoRa 结合应用于资产追踪、环境监测、远程数据采集等场景的开发者 📊篇幅预计:5300+ 字 🧭 背景与需求 在许多 IoT 项目中,单一通信方式往往难以兼顾近场数据采集…...

智能体革命:企业如何构建自主决策的AI代理?

OpenAI智能代理构建实用指南详解 随着大型语言模型&#xff08;LLM&#xff09;在推理、多模态理解和工具调用能力上的进步&#xff0c;智能代理&#xff08;Agents&#xff09;成为自动化领域的新突破。与传统软件仅帮助用户自动化流程不同&#xff0c;智能代理能够自主执行工…...