当前位置: 首页 > news >正文

Prompt Learning 的几个重点paper

Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation

在输入token之前构造一段任务相关的virtual tokens作为Prefix,然后训练的时候只更新Prefix部分的参数,PLM中的其他参数固定。针对自回归架构模型:在句子前面添加前缀,针对编码器-解码器架构模型:Encoder和Decoder都增加了前缀,得到 z = [PREFIX; x; PREFIX0; y]。Encoder端增加前缀是为了引导输入部分的编码,Decoder 端增加前缀是为了引导后续token的生成。该方法其实和构造Prompt类似,只是Prompt是人为构造的“显式”的提示,并且无法更新参数,而Prefix则是可以学习的“隐式”的提示。为了防止直接更新Prefix的参数导致训练不稳定和性能下降的情况,在Prefix层前面加了MLP结构,训练完成后,只保留Prefix的参数。通过消融实验证实,只调整embedding层的表现力不够,将导致性能显著下降,因此,在每层都加了prompt的参数。实验还对比了位置对于生成效果的影响,Prefix-tuning也是要略优于Infix-tuning的。其中,Prefix-tuning形式为 [PREFIX; x; y],Infix-tuning形式为 [x; INFIX; y]

Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning

该方法可以看作是Prefix Tuning的简化版本,它给每个任务定义了自己的Prompt,然后拼接到数据上作为输入,但只在输入层加入prompt tokens,并且不需要加入 MLP 进行调整来解决难训练的问题。Prompt Tuning 还提出了 Prompt Ensembling,也就是在一个批次(Batch)里同时训练同一个任务的不同 prompt(即采用多种不同方式询问同一个问题),这样相当于训练了不同模型,比模型集成的成本小多了。

P-Tuning: GPT Understands, Too

清华;针对Prompt Tuning的改进,该方法将Prompt转换为可以学习的Embedding层,并用MLP+LSTM的方式来对Prompt Embedding进行一层处理。相比Prefix Tuning,P-Tuning加入的可微的virtual token,但仅限于输入层,没有在每一层都加;另外,virtual token的位置也不一定是前缀,插入的位置是可选的。

P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks

清华;针对Prefix Tuning的改进;该方法在每一层都加入了Prompts tokens作为输入,而不是仅仅加在输入层。移除重参数化的编码器(以前的方法利用重参数化功能来提高训练速度和鲁棒性如:Prefix Tuning 中的 MLP 、P-Tuning 中的 LSTM,但这里作者发现重参数化的改进很小,还会影响模型的表现)。针对不同任务采用不同的提示长度。引入多任务学习。回归传统的分类标签范式,而不是映射器(P-Tuning v2回归传统的CLS标签分类范式,采用随机初始化的分类头(Classification Head)应用于tokens之上)。

相关文章:

Prompt Learning 的几个重点paper

Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation 在输入token之前构造一段任务相关的virtual tokens作为Prefix,然后训练的时候只更新Prefix部分的参数,PLM中的其他参数固定。针对自回归架构模型:在句子前面添…...

中科大计网学习记录笔记(三):接入网和物理媒体

前言: 学习视频:中科大郑烇、杨坚全套《计算机网络(自顶向下方法 第7版,James F.Kurose,Keith W.Ross)》课程 该视频是B站非常著名的计网学习视频,但相信很多朋友和我一样在听完前面的部分发现信…...

设计模式:工厂方法模式

工厂模式属于创建型模式,也被称为多态工厂模式,它在创建对象时提供了一种封装机制,将实际创建对象的代码与使用代码分离,有子类决定要实例化的产品是哪一个,把产品的实例化推迟到子类。 使用场景 重复代码 : 创建对象…...

HTML 相关知识点记录

<div> </div> DIV标签详细介绍-CSDN博客 div 是 division 的简写&#xff0c;division 意为分割、区域、分组。比方说&#xff0c;当你将一系列的链接组合在一起&#xff0c;就形成了文档的一个 division。 <p>标签&#xff1a;定义段落...

系统架构设计师考试大纲2023

一、 考试方式&#xff08;机考&#xff09; 考试采取科目连考、 分批次考试的方式&#xff0c; 连考的第一个科目作答结束交卷完成后自动进 入第二个科目&#xff0c; 第一个科目节余的时长可为第二个科目使用。 高级资格&#xff1a; 综合知识科目考试时长 150 分钟&#xff…...

sqli.labs靶场(第18~22关)

18、第十八关 经过测试发现User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:122.0) Gecko/20100101 Firefox/122.0加引号报错 这里我们闭合一下试试 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:122.0) Gecko/20100101 Firefox/122.0,127.0.0.1,adm…...

【tensorflow 版本 keras版本】

#. 安装tensorflow and keras&#xff0c; 总是遇到版本无法匹配的问题。 安装之前先查表 https://master--floydhub-docs.netlify.app/guides/environments/ 1.先确定你的python version 2.再根据下面表&#xff0c;确定安装的tesorflow, keras...

嵌入式学习第十六天

制作俄罗斯方块小游戏&#xff08;一&#xff09; 分析&#xff1a; printf函数高级用法 \033[&#xff1a;表示转义序列的开始 m&#xff1a;表示转义序列的结束 0&#xff1a;重置所有属性 1&#xff1a;设置粗体或高亮 30-37&#xff1a;设置字体色 30: 黑 31: 红 32:…...

Java过滤器拦截器的区别和实现

一、什么是过滤器与拦截器&#xff1f; 1.2 拦截器&#xff08;Interceptor&#xff09; java过滤器指的是在java中起到过滤的作用的一个方法。可以在一个请求到达servlet之前&#xff0c;将其截取进行逻辑判断&#xff0c;然后决定是否放行到请求的servlet&#xff1b;也可以在…...

Android 12 系统开机动画

修改Android开机动画有两种方式 方式一、通过adb 命令来修改&#xff1a; 进入/system/media目录&#xff0c;将里面的 bootanimation.zip 文件pull出来&#xff0c;然后解压&#xff0c;替换part0和part1中的图片&#xff0c;并且根据图片大小修改文件 desc.txt 中的内容&…...

C++:异常体系

异常体系 异常1.C语言传统的处理错误的方式2.C异常概念3.异常的使用3.1异常的抛出和捕获3.2 异常的重新抛出3.3异常安全3.4 异常规范 4.C标准库的异常体系5.异常的优缺点 异常 1.C语言传统的处理错误的方式 终止程序&#xff0c;如assert&#xff0c;缺陷&#xff1a;用户难以…...

民事二审案件庭审应如何准备?

一、你要明确审理范围&#xff0c;固定上诉请求 首先&#xff0c;第二审人民法院围绕当事人的上诉请求进行审理。 其次&#xff0c;在第二审程序中&#xff0c;原审原告增加独立的诉讼请求或者原审被告提出反诉的&#xff0c;第二审人民法院可以根据当事人自愿的原则就新增加的…...

WebRTC系列-H264视频帧组包(视频花屏问题)

文章目录 工具函数是否满足组帧条件函数PotentialNewFrame更新丢失包记录 UpdateMissingPackets重要属性1. InsertPacket2. FindFramesWebRTC在弱网环境下传输较大的视频数据,比如:屏幕共享数据;会偶发的出现黑屏的问题;也就是说当视频的码率比较大且视频的分辨率比较高的时…...

Common Mistakes in German

Comman Mistakes in German 1, Haus oder Hause2, ja nein oder doch(1) Positive Fragen(2) Negative Fragen 1, Haus oder Hause 2, ja nein oder doch (1) Positive Fragen (2) Negative Fragen kein / nicht P3...

Java基础数据结构之反射

一.定义 Java的反射机制是在运行状态中的&#xff0c;对于任意一个类都能知道这个类的所有属性和方法&#xff1b;对于任意一个对象&#xff0c;都能够调用它的任意方法及属性。既然能拿到&#xff0c;我们就可以修改部分类型信息。这种动态获取信息以及动态调用对象方法的功能…...

【实战系列----消息队列 数据缓存】rabbitmq 消息队列 搭建和应用

线上运行图&#xff0c;更新不算最新版&#xff0c;但可以使用修改线程等补丁功能&#xff0c;建议使用新版本。 远程服务器配置图: 这个可以更具体情况&#xff0c;因为是缓存队列理所当然 内存越大越好&#xff0c;至于核心4核以上足够使用。4核心一样跑 这里主要是需要配置服…...

【云原生kubernetes系列】---亲和与反亲和

1、亲和和反亲和 node的亲和性和反亲和性pod的亲和性和反亲和性 1.1node的亲和和反亲和 1.1.1ndoeSelector&#xff08;node标签亲和&#xff09; #查看node的标签 rootk8s-master1:~# kubectl get nodes --show-labels #给node节点添加标签 rootk8s-master1:~# kubectl la…...

【极简】Pytorch中的register_buffer()

register buffer 定义模型能用torch.save保存的、但是不更新参数。 使用&#xff1a;只要是nn.Module的子类就能直接self.调用使用&#xff1a; class A(nn.Module): #... self.register_buffer(betas, torch.linspace(beta_1, beta_T, T).double()) #...手动定义参数 上述…...

J-Link:STM32使用J-LINK烧录程序,其他MCU也通用

说明&#xff1a;本文记录使用J-LINK烧录STM32程序的过程。 1. J-LINK驱动、软件下载 1、首先拥有硬件J-Link烧录器。 2、安装J-Link驱动程序SEGGER 下载地址如下 https://www.segger.com 直接下载就可以了。 2.如何使用J-LINK向STM32烧写程序 1、安装好以后打开J-LINK Fl…...

从0到1入门C++编程——06 类和对象之多态、文件操作

文章目录 多态1.多态基本概念2.多态案例——计算器3.纯虚函数和抽象类4.多态案例——制作饮品5.虚析构和纯虚析构6.多态案例——电脑组装 文件操作1.文本文件--写文件2.文本文件--读文件3.二进制文件--写文件4.二进制文件--读文件 多态 1.多态基本概念 多态是C面向对象的三大…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...