当前位置: 首页 > news >正文

新媒体与传媒行业数据分析实践:从网络爬虫到文本挖掘的综合应用,以“中国文化“为主题

大家好,我是八块腹肌的小胖,

下面将围绕微博“中国文化”以数据分析、数据处理、建模及可视化等操作

目录

1、数据获取

2、数据处理

3、词频统计及词云展示

4、文本聚类分析

5、文本情感倾向性分析

6、情感倾向演化分析

7、总结


1、数据获取

本任务以新浪微博为目标网站,爬取“中国文化”为主题的微博数据进行数据预处理、数据可视化等操作。

目标网站如图1所示:

图1 微博网站及分析

通过分析微博网站,使用爬虫获取代码,爬虫核心伪代码如下:

  • 这段代码咱们开始处理微博数据了。这次的目标是搞清楚微博里的各种信息,包括内容、创建时间、作者、还有转发、评论、点赞这些数字。

    首先呢,咱们用jsonpath这个工具从一大堆微博数据里挑出来微博的文本内容,这就是咱们要分析的主角。但这些文本里可能夹杂了一些HTML标签,看着碍眼,所以用了正则表达式把这些标签统统清除掉,让文本干净整洁。

    然后,咱们也顺便把微博的发布时间、发布者、微博ID这些信息给捞出来,这都是分析的重要信息。特别的是,如果发现了有微博是长文,咱们就得用特殊的方式去获取全文,确保分析的内容不遗漏。

    紧接着,转发数、评论数、点赞数这些“数字见证”,也统统不放过,这些可是衡量微博火不火的重要标尺。

    最后,把这些信息整理好,打包进一个DataFrame里,这样数据就既清晰又方便后续的分析了。打印出一些列表的长度,就是为了检查一下咱们收集的信息完整不完整,防止哪里出了差错。

    整个过程就像是咱们对微博数据进行了一次大扫除,把需要的信息都收集齐全,准备好了接下来的分析步骤。这样一来,不管咱们想研究微博的哪方面信息,手头上都有足够的材料了。

1.	        # 微博内容
2.	        text_list = jsonpath(cards, '$..mblog.text')
3.	        # 微博内容-正则表达式数据清洗
4.	        dr = re.compile(r'<[^>]+>', re.S)
5.	        text2_list = []
6.	        print('text_list is:')
7.	        # print(text_list)
8.	        if not text_list:  # 如果未获取到微博内容,进入下一轮循环
9.	            continue
10.	        if type(text_list) == list and len(text_list) > 0:
11.	            for text in text_list:
12.	                text2 = dr.sub('', text)  # 正则表达式提取微博内容
13.	                # print(text2)
14.	                text2_list.append(text2)
15.	        # 微博创建时间
16.	        time_list = jsonpath(cards, '$..mblog.created_at')
17.	        time_list = [trans_time(v_str=i) for i in time_list]
18.	        # 微博作者
19.	        author_list = jsonpath(cards, '$..mblog.user.screen_name')
20.	        # 微博id
21.	        id_list = jsonpath(cards, '$..mblog.id')
22.	        # 判断是否存在全文
23.	        isLongText_list = jsonpath(cards, '$..mblog.isLongText')
24.	        idx = 0
25.	        for i in isLongText_list:
26.	            if i == True:
27.	                long_text = getLongText(v_id=id_list[idx])
28.	                text2_list[idx] = long_text
29.	            idx += 1
30.	        # 转发数
31.	        reposts_count_list = jsonpath(cards, '$..mblog.reposts_count')
32.	        # 评论数
33.	        comments_count_list = jsonpath(cards, '$..mblog.comments_count')
34.	        # 点赞数
35.	        attitudes_count_list = jsonpath(cards, '$..mblog.attitudes_count')
36.	        # 把列表数据保存成DataFrame数据
37.	        print('id_list:', len(id_list))
38.	        print(len(time_list))
39.	        print('region_name_list:', len(region_name_list))
40.	        print(len(status_city_list))
41.	        print(len(status_province_list))
42.	        print(len(status_country_list))

获取的爬虫数据如图2所示:

图2微博数据

2、数据处理


咱们这一步呢,是要把数据梳理得整整齐齐的,好比给数据做个美容。首先,咱们决定了要关注哪几个方面的信息:发布者的名字、发布时间、文本内容、转发数、评论数、点赞数和位置信息。这些都是分析微博活动时不可或缺的。

接下来,咱们对日期格式做了标准化处理,确保所有的日期都是按照年-月-日 时:分:秒这样的格式来的,这样看起来既整洁又方便后续的分析。

然后,文本内容里有些杂七杂八的东西需要清理掉,比如那些乱七八糟的标签啊、特殊字符啊,甚至是一些广告内容,都得用字符串替换的方法把它们给去掉,让文本内容清清爽爽。

咱们还考虑到了数据里可能会有一些空白的地方,这些地方咱们就统一填上"N/A",意思就是这里啥也没有,但是也不能空着,得有个标记。

做完这一切,咱们就可以看看咱们的数据变成啥样了。打印出来一看,所有的信息都按部就班,整整齐齐的,这下子,无论是要做分析还是画图,手里的数据都是清清楚楚,明明白白的了。这就像是给数据穿上了新衣服,既美观又实用。

1.	# 数据清洗和预处理
2.	# 列:screen_name, created_at, text, reposts_count, comments_count, attitudes_count, location
3.	selected_columns = ['screen_name', 'created_at', 'text', 'reposts_count', 'comments_count', 'attitudes_count', 'location']
4.	data = data[selected_columns]
5.	
6.	# 处理日期格式
7.	data['created_at'] = pd.to_datetime(data['created_at'], format='%Y-%m-%d %H:%M:%S')
8.	
9.	# 去除文本中的特殊字符或标签
10.	data['text'] = data['text'].str.replace(r'#', '')
11.	data['text'] = data['text'].str.replace(r'【', '')
12.	data['text'] = data['text'].str.replace(r'】', '')
13.	data['text'] = data['text'].str.replace(r'不得鸟的微博视频', '')
14.	
15.	# 填充缺失值(如果有)
16.	data = data.fillna('N/A')
17.	
18.	# 查看预处理后的数据
19.	print(data)

“数据处理”代码输出如图3所示:

图3数据处理

3、词频统计及词云展示


咱们这一步就是要搞清楚咱们数据里面都聊了啥,用的哪些词特别多。

首先,得用jieba来分词,就是把句子切成词儿。把咱们数据里的文本内容拿出来,一条条地切,切完了汇总到一起。

然后,你知道有些词儿咱其实不太需要,比如“的”、“是”这种,这就需要用到停用词表了。

停用词表里的词儿,咱们在分词结果里看到了就直接忽略它。这个停用词表是个文件,咱们打开它,把里面的词读出来,存起来,准备用。

接下来,咱们要把切出来的词里面,不在停用词表里的筛出来,这样剩下的就都是咱们要的了。

这些词儿,咱们来数数谁出现得多,谁出现得少,就是词频统计。

统计完了,咱们就挑出来出现次数最多的前十个词,看看都是些啥,打印出来给自己看看。

最后,用这些词儿画个词云图。词云图就是把这些词以不同的大小显示出来,谁大谁就是出现次数多的。

这样一看,就一目了然了,知道咱们数据里面热点话题都有啥。

画完了直接显示出来,这图挺好看的,也挺有用的,一眼能看出来重点词汇。

1.	# 词频统计及词云显示
2.	# 分词
3.	import pandas as pd
4.	import jieba
5.	from collections import Counter
6.	from wordcloud import WordCloud
7.	import matplotlib.pyplot as plt
8.	# 分词
9.	seg_list = []
10.	for text in data['text']:
11.	    seg_list.extend(jieba.cut(text))
12.	
13.	# 加载停用词表
14.	stopwords = set()
15.	with open('stop_words.txt', 'r', encoding='utf-8') as f:
16.	    for line in f:
17.	        stopwords.add(line.strip())
18.	
19.	# 过滤停用词
20.	seg_list_filtered = [word for word in seg_list if word not in stopwords]
21.	
22.	# 统计词频
23.	word_counts = Counter(seg_list_filtered)
24.	
25.	# 获取词频最高的前N个词
26.	top_n = 10
27.	top_words = word_counts.most_common(top_n)
28.	
29.	# 打印词频最高的词
30.	for word, count in top_words:
31.	    print(f'{word}: {count}')
32.	
33.	# 生成词云
34.	wordcloud = WordCloud(font_path='SimHei.ttf', background_color='white').generate(' '.join(seg_list_filtered))
35.	
36.	# 显示词云
37.	plt.imshow(wordcloud, interpolation='bilinear')
38.	plt.axis('off')
39.	plt.show()

4、文本聚类分析


下面聚类的代码,咱们是要搞点更高级的,不光是看看热词,还要把这些文本内容分个类,看看都有哪些不同的主题或者类型在里面。

首先,还是老规矩,先把数据读进来,用Pandas从一个叫data.csv的文件里读数据。然后,还是得清理一下文本,把一些乱七八糟的特殊字符或者不需要的标签给去掉。

接着,分词。这次咱们分完词后,每个词之间加个空格,因为接下来要用TF-IDF(词频-逆文档频率)来向量化文本,这个操作是把文本转换成数学上的向量,为的是让计算机能理解和处理。

咱们用TF-IDF把文本向量化之后,文本就变成了一堆数字表示的向量,接下来就可以用KMeans这个算法来聚类了。意思就是,咱们想把这些文本按内容或风格自动分成几堆,这里咱们定了3堆。

聚类完了,为了让咱们肉眼能看出来效果,用到了SVD(奇异值分解)进行降维,就是把那些高维的数据压缩到2维空间里,这样就能在图上画出来了。

然后,咱们就可以画图看看了,用不同颜色表示不同的类,把这些点画到图上,通过颜色就能看出来哪些文本是被分到一组的。

这还不够,咱们还得知道每组里面都是些啥内容,所以要找出每个聚类(也就是每堆)的关键词。这里就是计算每个聚类里面哪些词最能代表这个聚类,然后挑出来权重最高的前10个词。

最后,把这些关键词打印出来,每个聚类的关键词都列一列,这样一看,就知道每个聚类大概是啥主题的了。还把每个聚类里面的文本也打印出来,这样咱们就能具体看看分得对不对,有没有啥意外的发现。

画完图,标上轴名,给图个标题,这图就完整了,展示的是咱们的聚类结果。看完这个,就能对咱们数据里的文本有个更深入的了解了。

1.	import pandas as pd
2.	import jieba
3.	from sklearn.feature_extraction.text import TfidfVectorizer
4.	from sklearn.cluster import KMeans
5.	from sklearn.decomposition import TruncatedSVD
6.	import matplotlib.pyplot as plt
7.	from scipy.sparse import csr_matrix
8.	
9.	# 读取数据文件
10.	data = pd.read_csv('data.csv')
11.	
12.	# 去除文本中的特殊字符或标签
13.	data['text'] = data['text'].str.replace(r'#', '')
14.	data['text'] = data['text'].str.replace(r'【', '')
15.	data['text'] = data['text'].str.replace(r'】', '')
16.	data['text'] = data['text'].str.replace(r'不得鸟的微博视频', '')
17.	
18.	# 分词
19.	seg_list = []
20.	for text in data['text']:
21.	    seg_list.append(' '.join(jieba.cut(str(text))))
22.	
23.	# 使用TF-IDF向量化文本
24.	vectorizer = TfidfVectorizer()
25.	X = vectorizer.fit_transform(seg_list)
26.	
27.	# 转换为稀疏矩阵
28.	X_sparse = csr_matrix(X)
29.	
30.	# 使用KMeans聚类
31.	k = 3  # 聚类数量
32.	kmeans = KMeans(n_clusters=k, random_state=42)
33.	kmeans.fit(X_sparse)
34.	
35.	# 使用SVD进行降维
36.	svd = TruncatedSVD(n_components=2)
37.	X_svd = svd.fit_transform(X_sparse)
38.	
39.	# 绘制聚类结果
40.	colors = ['red', 'blue', 'green']
41.	labels = kmeans.labels_
42.	for i in range(len(X_svd)):
43.	    plt.scatter(X_svd[i, 0], X_svd[i, 1], color=colors[labels[i]])
44.	
45.	# 获取聚类关键词
46.	terms = vectorizer.get_feature_names()
47.	
48.	# 显示类别关键词
49.	for cluster_id in range(k):
50.	    cluster_terms = []
51.	    cluster_indices = labels == cluster_id
52.	    cluster_text = data.loc[cluster_indices, 'text']
53.	    cluster_vector = X[cluster_indices]
54.	
55.	    # 计算每个类别的关键词权重总和
56.	    cluster_weights = cluster_vector.sum(axis=0).A1
57.	    sorted_indices = cluster_weights.argsort()[::-1]
58.	
59.	    # 获取权重排名前10的关键词
60.	    for term_index in sorted_indices[:10]:
61.	        cluster_terms.append(terms[term_index])
62.	
63.	    print(f"Cluster {cluster_id + 1} Keywords: {' '.join(cluster_terms)}")
64.	    print(f"Cluster {cluster_id + 1} Texts:")
65.	    print(cluster_text)
66.	    print()
67.	
68.	plt.xlabel('Component 1')
69.	plt.ylabel('Component 2')
70.	plt.title('KMeans Clustering')
71.	plt.show()

文本聚类最终展示的聚类前10个关键词如下所示,完整结果及聚类输出如图5所示:

Cluster 1 Keywords: 京剧 国粹 表演 中国 戏曲 艺术 文明 视频 变脸 传统
Cluster 2 Keywords: 中国 文化 历史 美食 传统 传统节日 视频 微博 我们 六级
Cluster 3 Keywords: 街头 联动 外国 上海 时代广场 疯狂 上分 文化 我们 中国

图5 聚类结果

5、文本情感倾向性分析

咱们这回的任务是要看看咱们数据里面的文本,大家是个啥心情,是不是开心,还是有点小郁闷。用的是情感分析,这玩意儿可以算出一句话是正面的、负面的还是说不上好坏中性的。

先来,对每条文本用SnowNLP这个工具跑一遍,这个东西能给咱们一个情感倾向性得分,分数高的话,说明这话挺乐观的,分数低就可能有点悲观。

得到所有文本的情感得分后,咱们分三类,负面、中性、正面。规则是这样的,得分低于0.3的咱们认为是负面的,0.3到0.7之间的算中性,高于0.7的就是正面了。然后数一数每类有多少条。

下一步,咱们要把这个结果做成一个饼图,一眼就能看出来哪种情绪的文本多。为了好看点,还得挑挑颜色,用的是sns(Seaborn库)的色板,选了个pastel(粉彩)风格的前三种颜色。

画饼图时,标上每种情绪的标签,加上每部分占的比例,然后从90度开始画,这样看起来舒服。

因为咱们要显示中文,所以还得设置下字体,确保中文不会乱码。设置完后,把所有文本的字体都调整成咱们设置的那个。

给图加个标题,叫“情感分析结果”,别忘了也要设置成中文显示。最后,为了饼图看起来是个正圆,调一调轴的比例。

做完这些,跑一下,饼图就出来啦。这样一看,咱们就清楚了,在咱们的数据里,人们大多是啥心情,乐观的、悲观的还是说不上来的,心里有数了。

1.	# 对每条文本进行情感分析并计算情感倾向性得分
2.	sentiments = []
3.	for text in data['text']:
4.	    s = SnowNLP(str(text))
5.	    sentiment_score = s.sentiments
6.	    sentiments.append(sentiment_score)
7.	
8.	# 情感类别定义
9.	labels = ['负面', '中性', '正面']
10.	
11.	# 统计情感类别的数量
12.	sentiment_counts = [0, 0, 0]
13.	for sentiment in sentiments:
14.	    if sentiment < 0.3:
15.	        sentiment_counts[0] += 1
16.	    elif sentiment >= 0.3 and sentiment < 0.7:
17.	        sentiment_counts[1] += 1
18.	    else:
19.	        sentiment_counts[2] += 1
20.	
21.	# 创建情感分析饼图
22.	plt.figure(figsize=(6, 6))
23.	
24.	# 设置颜色
25.	colors = sns.color_palette('pastel')[0:3]
26.	
27.	# 绘制饼图
28.	plt.pie(sentiment_counts, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
29.	
30.	# 设置中文显示
31.	font = FontProperties(fname='SimHei.ttf', size=12)
32.	for text in plt.gca().texts:
33.	    text.set_fontproperties(font)
34.	
35.	# 添加标题
36.	plt.title('情感分析结果', fontproperties=font)
37.	
38.	# 调整饼图为正圆
39.	plt.axis('equal')
40.	
41.	# 显示饼图
42.	plt.show()

代码运行后的到的情感分析饼状图如图6所示:

图6 情感分析

6、情感倾向演化分析

咱们这回的动作是,要看看随着时间变化,人们的情绪变化怎么样。就像看天气预报一样,不过咱们预报的是情绪。

首先,把刚才算出来的每条文本的情感得分,直接加到数据里去,这样每条数据都有个情感分数了。

接下来,咱们要按日期来一次大聚合,把同一天的情感得分平均一下,看看这一天的整体情绪怎么样。这样咱们就能得到每一天的平均情感得分了。

然后,咱们开始画图,这次画的是折线图,一看就知道每天情绪怎么变的。图的大小定为12x6,这样显示的信息多一些,看起来也舒服。

为了让图好看,咱们选了个色板,"husl",颜色鲜艳一点,把折线图画出来,用的是色板的第一个颜色。

标题、标签都设置好,用中文显示,并且字号也调了一下,让它更清晰易读。日期标签旋转了45度,这样不管日期多密集,每个标签都能看得清。

加了个图例,也是用中文显示。然后,为了让图看起来更有条理,加了横向的网格线,线条是虚线,透明度调低一些,不那么扎眼。

最后,调整了一下图形的边距,让整个图看起来更紧凑,信息显示得更完整。

一切设置好后,展示图形,这下咱们就能看到,随着时间的推移,整体的情绪是怎么变化的了。这可比单纯看数字有意思多了,一目了然,一折线图看天下情绪!

1.	# 添加情感得分列
2.	data['sentiment_score'] = sentiments
3.	
4.	# 按日期分组并计算每天的情感得分的平均值
5.	sentiment_by_date = data.groupby(data['created_at'].dt.date)['sentiment_score'].mean()
6.	
7.	# 创建图形
8.	plt.figure(figsize=(12, 6))
9.	
10.	# 设置颜色
11.	colors = sns.color_palette("husl")
12.	
13.	# 绘制情感得分随时间变化的折线图,并设置颜色
14.	sentiment_by_date.plot(kind='line', linewidth=2, color=colors[0])
15.	
16.	# 设置标题、标签和图例
17.	plt.title('情感分数随时间变化', fontproperties=myfont, fontsize=16)
18.	plt.xlabel('日期', fontproperties=myfont, fontsize=12)
19.	plt.ylabel('情感分数', fontproperties=myfont, fontsize=12)
20.	plt.xticks(rotation=45)
21.	plt.legend(prop=myfont)
22.	
23.	# 设置网格线
24.	plt.grid(axis='y', linestyle='--', alpha=0.5)
25.	
26.	# 调整图像边距
27.	plt.tight_layout()
28.	
29.	# 显示图形
30.	plt.show()

情感演化如图7所示:

图7 情感演化

由图7可知,2023年1月网民情绪波动较大,分析与中国传统节日“春节”有关,且整体情绪处于中性和积极分值中;2023年4月至2023年6月期间,网民整齐情绪波动较大,分析其可能与4月的清明节、5月劳动节及6月的端午节有关。

7、总结

本次任务以“中国文化”为主题,首先通过爬虫对微博数据进行爬取,并对获取的数据进行预处理等操作。通过对微博数据进行词频统计,可以发现在关于中国文化的讨论中,最常出现的词是"中国",出现了4112次,紧随其后的是"文化",出现了2986次。此外,历史、传统和美食也是热门关键词,分别出现了1036次、1021次和645次。这反映了人们对中国文化的关注和兴趣。

使用kmeans算法进行文本聚类,将微博文本分为了三类。第一类聚焦于中国传统艺术,如京剧、国粹和戏曲,体现了中国丰富的艺术表演传统。第二类聚集了与中国文化、历史和传统节日有关的关键词,同时也涉及到微博和视频的讨论。第三类则关注街头文化、外国影响和中国城市的繁华景象。

情感分析的结果显示,人们对中国文化的态度整体上积极,积极情感得分为91.2%,消极情感得分为4.1%,中性情感得分为4.7%。这说明大多数人在微博上表达对中国文化的喜爱和肯定。

在情感演化的分析中,选取了时间范围从2022年6月到2023年6月。2023年1月,人们的情绪波动较大,可能与中国传统节日"春节"有关,整体情绪处于中性和积极分值中。而在2023年4月至6月期间,情绪波动再次增大,推测可能与清明节、劳动节和端午节等传统节日有关。

基于微博爬取的"中国文化"分析表明人们对中国文化表达了浓厚的兴趣和积极的态度。通过文本聚类和情感分析,我们深入了解了人们对中国文化的关注焦点和情感变化。这些结果有助于我们更好地理解和推动中国文化的传播与发展。

相关文章:

新媒体与传媒行业数据分析实践:从网络爬虫到文本挖掘的综合应用,以“中国文化“为主题

大家好&#xff0c;我是八块腹肌的小胖&#xff0c; 下面将围绕微博“中国文化”以数据分析、数据处理、建模及可视化等操作 目录 1、数据获取 2、数据处理 3、词频统计及词云展示 4、文本聚类分析 5、文本情感倾向性分析 6、情感倾向演化分析 7、总结 1、数据获取 本…...

Visual Studio使用Git忽略不想上传到远程仓库的文件

前言 作为一个.NET开发者而言&#xff0c;有着宇宙最强IDE&#xff1a;Visual Studio加持&#xff0c;让我们的开发效率得到了更好的提升。我们不需要担心环境变量的配置和其他代码管理工具&#xff0c;因为Visual Studio有着众多的拓展工具。废话不多说&#xff0c;直接进入正…...

Nginx简单阐述及安装配置

目录 一.什么是Nginx 二.Nginx优缺点 1.优点 2.缺点 三.正向代理与反向代理 1.正向代理 2.反向代理 四.安装配置 1.添加Nginx官方yum源 2.使用yum安装Nginx 3.配置防火墙 4.启动后效果 一.什么是Nginx Nginx&#xff08;“engine x”&#xff09;是一个高性能的HTTP…...

【遥感入门系列】遥感分类技术之遥感解译

遥感的最终成果之一就是从遥感图像上获取信息&#xff0c;遥感分类是获取信息的重要手段。同时遥感图像分类也是目前遥感技术中的热点研究方向&#xff0c;每年都有新的分类方法推出。 本小节主要内容&#xff1a; 遥感分类基本概念常见遥感分类方法 1 遥感分类概述 遥感图…...

解决:IDEA无法下载源码,Cannot download sources, sources not found for: xxxx

原因 Maven版本太高&#xff0c;遇到http协议的镜像网站会阻塞&#xff0c;要改为使用https协议的镜像网站 解决方案 1.打开设置 2. 拿到settings.xml路径 3. 将步骤2里箭头2的User settings file&#xff1a;settings.xml打开&#xff0c;作以下修改 保存即可。如果还不行…...

什么是IDE,新手改如何选择IDE?

IDE 是 Integrated Development Environment&#xff08;集成开发环境&#xff09;的缩写&#xff0c;它是一种软件应用程序&#xff0c;为程序员提供了一站式的开发环境&#xff0c;整合了多种工具和服务&#xff0c;以便高效地创建、修改、编译、调试和运行软件程序。IDE 集成…...

springBoot+Vue汽车销售源码

源码描述: 汽车销售管理系统源码基于spring boot以及Vue开发。 针对汽车销售提供客户信息、车辆信息、订单信息、销售人员管理、 财务报表等功能&#xff0c;提供经理和销售两种角色进行管理。 技术架构&#xff1a; idea(推荐)、jdk1.8、mysql5.X(不能为8驱动不匹配)、ma…...

FPS游戏框架漫谈第五天

今天想了想整理下AnimatorManager 他的职责是负责动画的播放&#xff0c;那么在介绍该对象具备的对外接口&#xff0c;必须先介绍下拥有动画的对象他是怎么管理动画数据的&#xff0c;打个比方如果我们一个把武器需要播放开火动画&#xff0c;那么我们基于unity引擎可视化动画编…...

83.如何设计高可用系统

文章目录 一、简介二、导致系统不可用的常见原因三、高可用系统设计基本原则四、容错性设计五、弹性伸缩六、可观测七、安全防护设计八、自动化 一、简介 什么是高可用 高可用是指系统在面对各种故障和异常情况时&#xff0c;仍能够提供稳定、可靠的服务。对于企业和用户而言&…...

Map和Set讲解

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f4d5;格言&#xff1a;那些在暗处执拗生长的花&#xff0c;终有一日会馥郁传香欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 集合框架 模型 Set 常见方法和说明 Set总结 Map说明 Map常见方法和说明 Map 中HashMap的 …...

PHP集成开发环境 PhpStorm 2023 for mac中文激活版

PhpStorm 2023 for Mac是一款功能强大的PHP集成开发环境&#xff08;IDE&#xff09;&#xff0c;旨在帮助开发者更高效地编写、调试和测试PHP代码。该软件针对Mac用户设计&#xff0c;提供了丰富的功能和工具&#xff0c;以简化开发过程并提高开发效率。 软件下载&#xff1a;…...

数学建模 - 线性规划入门:Gurobi + python

在工程管理、经济管理、科学研究、军事作战训练及日常生产生活等众多领域中&#xff0c;人们常常会遇到各种优化问题。例如&#xff0c;在生产经营中&#xff0c;我们总是希望制定最优的生产计划&#xff0c;充分利用已有的人力、物力资源&#xff0c;获得最大的经济效益&#…...

SpringBoot security 安全认证(二)——登录拦截器

本节内容&#xff1a;实现登录拦截器&#xff0c;除了登录接口之外所有接口访问都要携带Token&#xff0c;并且对Token合法性进行验证&#xff0c;实现登录状态的保持。 核心内容&#xff1a; 1、要实现登录拦截器&#xff0c;从Request请求中获取token&#xff0c;从缓存中获…...

详解WebRTC rtc::Thread实现

rtc::Thread介绍 rtc::Thread类不仅仅实现了线程这个执行器&#xff08;比如posix底层调用pthread相关接口创建线程&#xff0c;管理线程等&#xff09;&#xff0c;还包括消息队列&#xff08;message_queue)的实现&#xff0c;rtc::Thread启动后就作为一个永不停止的event l…...

阿赵UE学习笔记——13、贴花

阿赵UE学习笔记目录 大家好&#xff0c;我是阿赵。   继续学习虚幻引擎的使用。这次介绍一种特殊的材质类型&#xff0c;贴花。 一、获取贴花资源 在没有分析贴花的原理之前&#xff0c;可以先去获得一些免费的贴花资源来使用&#xff0c;比如在Quixel上面就有专门的一个资源…...

简单说说mysql的日志

今天我们通过mysql日志了解mysqld的错误日志、慢查询日志、二进制日志&#xff0c;redolog, undolog等。揭示它们的作用和用途&#xff0c;让我们工作中更能驾驭mysql。 redo 日志 如果mysql事务提交后发生了宕机现象&#xff0c;那怎么保证数据的持久性与完整性&#xff1f;…...

如何在CentOS安装DataEase数据分析服务并实现远程访问管理界面

如何在CentOS安装DataEase数据分析服务并实现远程访问管理界面 前言1. 安装DataEase2. 本地访问测试3. 安装 cpolar内网穿透软件4. 配置DataEase公网访问地址5. 公网远程访问Data Ease6. 固定Data Ease公网地址 &#x1f308;你好呀&#xff01;我是 是Yu欸 &#x1f30c; 202…...

HTTP请求传递参数方式【2024-02-01】

1、HTTP请求传递参数分类 1.1、按照请求方式分类 GET方法:通过查询字符串&#xff08;Query String&#xff0c;每个参数由参数名和参数值组成&#xff0c;使用等号 连接&#xff0c;不同参数之间使用 & 符号分隔&#xff09;的方式或直接将参数放在URL中来传递参数POST…...

Error: Projects must list all files or use an ‘include‘ pattern.

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…...

移动应用开发的方式

移动应用开发的方式(三种) Native App&#xff1a; 本地应用程序&#xff08;原生App&#xff09; Web App&#xff1a;网页应用程序&#xff08;移动web&#xff09; Hybrid App&#xff1a;混合应用程序&#xff08;混合App&#xff09; hybrid应用场景 1、微信公众号&…...

C#学习笔记_类(Class)

类的定义 类的定义是以关键字 class 开始&#xff0c;后跟类的名称。类的主体&#xff0c;包含在一对花括号内。 语法格式如下&#xff1a; 访问标识符 class 类名 {//变量定义访问标识符 数据类型 变量名;访问标识符 数据类型 变量名;访问标识符 数据类型 变量名;......//方…...

壹[1],Xamarin开发环境配置

1&#xff0c;环境 VS2022 注&#xff1a; 1&#xff0c;本来计划使用AndroidStudio&#xff0c;但是也是一堆莫名的配置让人搞得很神伤&#xff0c;还是回归C#。 2&#xff0c;MAUI操作类似&#xff0c;但是很多错误解来解去&#xff0c;且调试起来很卡。 3&#xff0c;最…...

SAM:基于 prompt 的通用图像分割模型

Paper: Kirillov A, Mintun E, Ravi N, et al. Segment anything[J]. arXiv preprint arXiv:2304.02643, 2023. Introduction: https://segment-anything.com/ Code: https://github.com/facebookresearch/segment-anything SAM 是 Meta AI 开发的一款基于 prompt 的通用视觉大…...

2024美赛数学建模C题思路+模型+代码+论文

2024美赛A-F题思路代码模型论文&#xff1a;2.2开赛第一时间更新&#xff0c;获取见文末名片 美赛流程以及经验分享 今天主要和大家分享一下我之前参加美赛的经验&#xff0c;主要分两部分来讲。一部分是美赛流程&#xff0c;另一部分是美赛经验。 一 美赛流程 比赛前&#x…...

npm run serve和npm run dev的区别

1. 功能&#xff1a;通常&#xff0c;"npm run serve"用于启动开发服务器&#xff0c;提供实时的开发环境&#xff0c;支持自动重新加载和热模块替换。这样可以在开发过程中实时查看代码更改的效果。而"npm run dev"可以是一个自定义的指令&#xff0c;用于…...

已解决:winform开发中删除某方法导致窗体设计报错

一、报错截图 二、解决方案 第一步&#xff0c;点击上图的转到代码 第二步&#xff0c;注释掉报错的部分&#xff08;代码前面加//&#xff09; 第三步&#xff0c;重新编译 最后&#xff0c;恢复正常...

开源软件的影响力

开源软件如何推动技术创新 开源软件通过开放源代码,为全球开发者提供了共同的平台,促进了协作、交流,并推动了软件技术的创新和发展。以下是一些关键方面的分析: 透明度与信任: 开源软件的源代码是公开可见的,这种透明度带来了更高水平的信任。开发者和用户能够审查代码,…...

postgresql lc_ctype不同值之间的转换

LC_CTYPE 用于决定字元是否为数字,字母,空格,标点符号,及大小写等[1]。将 LC_CTYPE 设为「C」表示 isupper(c) 或 tolower(c) 等 C 语言函数[2]仅针对 US-ASCII 范围内的字元给出预期结果。因为像 upper()、lower() 或 initcap 这类型的Postgres SQL 语句是在libc 函数上实…...

纸盒生产ERP软件怎么样?常用纸盒生产ERP系统有哪几种

市场上的纸盒种类繁多&#xff0c;这些差异化的商品对应多元化的销售渠道和营销策略&#xff0c;日常的经营管理工作较为繁琐。而纸盒生产涉及原材料、发料、车间、工时评估、排产、质检、委外、工单等诸多流程&#xff0c;想要随时掌握各环节进度&#xff0c;及时处理存在的问…...

2024年重庆市考报名照上传失败的原因

2024年重庆市考报名照需要根据以下要求生成&#xff1a; 1、近期6个月&#xff0c;免冠证件照。 2、照片背景白底或者蓝底或者红底背景。 3、照片文件jpg格式&#xff0c;大小在20KB以下 4、照片像素大小&#xff0c;295*413像素 5、照片必须使用审核工具审核后才能上传...