当前位置: 首页 > news >正文

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别

目录

    • 分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别。
2.自带数据,多输入,单输出,多分类。图很多、混淆矩阵图、预测效果图等等
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2023及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据私信博主回复Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别
%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别 目录 分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SCN-Adaboost随机配置网…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之TextPicker组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之TextPicker组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、TextPicker组件 TextClock组件通过文本将当前系统时间显示在设备上。支持不…...

linux中vim的操作

(码字不易,关注一下吧w~~w) 命令模式: 当我们按下esc键时,我们会进入命令模式;当使用vi打开一个文件时也是进入命令模式。 光标移动: 1 保存退出:ZZ 2 代码格式化:ggG 3 光标移动&#xff…...

《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树

文章目录 第5章 决策树5.1 决策树模型与学习5.1.1 决策树模型5.1.2 决策树与if-then规则5.1.3 决策树与条件概率分布5.1.4 决策树学习5.2 特征选择5.2.1 特征选择问题5.2.2 信息增益5.2.3 信息增益比5.3.1 ID3算法5.3.2 C4.5的生成算法5.4 决策树的剪枝5.5 CART算法5.5.1 CART生…...

【C++11(一)】列表初始化and右值引用

一、 统一的列表初始化 1.1 {}初始化 在C98中,标准允许 使用花括号{}对数组或者结构体元素 进行统一的列表初始值设定 C11扩大了用大括号 括起的列表(初始化列表)的使用范围 使其可用于所有的内置类型和 用户自定义的类型 使用初始化列表时…...

为什么SSL会握手失败?SSL握手失败原因及解决方案

随着网络安全技术的发展,SSL证书作为网站数据安全的第一道防线,被越来越多的企业选择。SSL证书使用的是SSL协议,而SSL握手是SSL协议当中最重要的一部分。当部署SSL证书时,如果服务器和客户端之间无法建立安全连接,就会…...

STM32——智能小车

STM32——智能小车 硬件接线 B-1A – PB0 B-1B – PB1 A-1A – PB2 A-1B – PB10 其余接线参考51单片机小车项目。 1.让小车动起来 motor.c #include "motor.h" void goForward(void) {// 左轮HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_SET);HAL_GPIO…...

开源:基于Vue3.3 + TS + Vant4 + Vite5 + Pinia + ViewPort适配..搭建的H5移动端开发模板

vue3.3-Mobile-template 基于Vue3.3 TS Vant4 Vite5 Pinia ViewPort适配 Sass Axios封装 vconsole调试工具,搭建的H5移动端开发模板,开箱即用的。 环境要求: Node:16.20.1 pnpm:8.14.0 必须装上安装pnpm,没装的看这篇…...

缩略图保持加密(thumbnail-preserving encryption, TPE)的理论基础

这涉及到一些视觉心理学等方面知识: 1、参考文献: 云存储图像缩略图保持的加密研究进展(中国图像图形学报) 一些视觉心理学的研究为TPE的成功实现提供了理论基础。Potter(1975, 1976)的研究表明人类的视觉系统能够在100 ms内从一个新场景中提取出相应的语义信息;250 ms内…...

nodejs+vue+mysql校园失物招领网站38tp1

本高校失物招领平台是为了提高用户查阅信息的效率和管理人员管理信息的工作效率,可以快速存储大量数据,还有信息检索功能,这大大的满足了用户和管理员这两者的需求。操作简单易懂,合理分析各个模块的功能,尽可能优化界…...

GEDepth:Ground Embedding for Monocular Depth Estimation

参考代码:gedepth 出发点与动机 相机的外参告诉了相机在世界坐标系下的位置信息,那么可以用这个外参构建一个地面基础深度作为先验,后续只需要在这个地面基础深度先验基础上添加offset就可以得到结果深度,这样可以极大简化深度估…...

校园圈子论坛系统--APP小程序H5,前后端源码交付,支持二开!uniAPP+PHP书写!

随着移动互联网的快速发展,校园社交成为了大学生们日常生活中重要的一部分。为了方便校园内学生的交流和互动,校园社交小程序逐渐走入人们的视野。本文将探讨校园社交小程序的开发以及其带来的益处。 校园社交小程序的开发涉及许多技术和设计方面。首先&…...

VMware vCenter告警:vSphere UI运行状况警报

vSphere UI运行状况警报 不会详细显示告警的具体内容,需要我们自己进一步确认告警原因。 vSphere UI运行状况警报是一种监控工具,用于检测vSphere环境中的潜在问题。当警报触发时,通常表示系统遇到了影响性能或可用性的问题。解决vSphere UI…...

C# 引用同一个dll不同版本的程序集

因为项目需要所以必须在项目中引用不同版本的同一程序集 我要引用的文件是newtonsoft.json.dll 两个版本为12.0.0.0 和4.0.0.0 1.如果已经先引入了newtonsoft.json 12.0.0.0版本的程序集,如果直接引入另一个版本的程序集的话会提示不成功,所以先将另一个…...

单机搭建hadoop环境(包括hdfs、yarn、hive)

单机可以搭建伪分布式hadoop环境,用来测试和开发使用,hadoop包括: hdfs服务器 yarn服务器,yarn的前提是hdfs服务器, 在前面两个的基础上,课可以搭建hive服务器,不过hive不属于hadoop的必须部…...

LEETCODE 170. 交易逆序对的总数

class Solution { public:int reversePairs(vector<int>& record) {if(record.size()<1)return 0;//归并 递归int left,right;left0;rightrecord.size()-1;int nummergeSort(left,right,record);return num;}int mergeSort(int left,int right, vector<int>…...

「HarmonyOS」EventHub事件通知详细使用方法

需求背景&#xff1a; 在开发过程中&#xff0c;肯定会出现触发特定事件&#xff0c;需要全局进行通知&#xff0c;与之相关的部分进行执行相应的修改方法。举个例子&#xff1a;修改了用户个人昵称&#xff0c;需要进行全局通知&#xff0c;在涉及昵称的部分收到通知后&#…...

为什么golang不支持可重入锁呢?

为什么golang不需要可重入锁&#xff1f; 在工程中使用锁的原因在于为了保护不变量&#xff0c;也可以用于保护内、外部的不变量。 基于此&#xff0c;Go 在互斥锁设计上会遵守这几个原则。如下&#xff1a; 在调用 mutex.Lock 方法时&#xff0c;要保证这些变量的不变性保持…...

聊一聊Tomcat的架构和运行流程,尽量通俗易懂一点

1、Tomcat的架构 这里可以看出 A、一个Tomcat就是一个Server&#xff0c;一个Server下会有多个Service&#xff0c; B、Service只负责封装多个Connector和一个Container&#xff08;Service本身不是容器&#xff0c;可以看做只是用来包装Connector和Container的壳&#xff0c…...

ModelArts加速识别,助力新零售电商业务功能的实现

前言 如果说为客户提供最好的商品是产品眼中零售的本质&#xff0c;那么用户的思维是什么呢&#xff1f; 在用户眼中&#xff0c;极致的服务体验与优质的商品同等重要。 企业想要满足上面两项服务&#xff0c;关键在于提升效率&#xff0c;也就是需要有更高效率的零售&#…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...