当前位置: 首页 > news >正文

数据结构—基础知识:哈夫曼树

文章目录

  • 数据结构—基础知识:哈夫曼树
    • 哈夫曼树的基本概念
    • 哈夫曼树的构造算法
      • 哈夫曼树的构造过程
      • 哈夫曼算法的实现
      • 算法:构造哈夫曼树

数据结构—基础知识:哈夫曼树

哈夫曼树的基本概念

哈夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,在实际中有广泛的用途。哈夫曼树的定义,涉及路径、路径长度、权等概念,下面先给出这些概念的定义,然后再介绍哈夫曼树

  1. 路径:从树中一个结点到另一个结点之间的分支构成这两个结点之间的路径。
  2. 路径长度:路径上的分支数目称作路径长度。
  3. 树的路径长度:从树根到每一结点的路径长度之和。
  4. :赋予某个实体的一个量,是对实体的某个或某些属性的数值化描述。在数据结构中,实体有结点(元素)和边(关系)两大类,所以对应有结点权利边权结点权或边权具体代表什么意义,由具体情况决定。如果在一棵树中的结点上带有权值,则对应的就有带权树等概念。
  5. 结点的带权路径长度:从该结点到树根之间的路径长度与结点上权的乘积。
  6. 树的带权路径长度:树中所有叶子结点的带权路径长度之和,通常记作WPL。
  7. 哈夫曼树:设有m个权值{w1,w2,…wm},可以构造一棵含n个叶子结点的二叉树,每个叶子结点的权为w,则其中带权路径长度WPL最小的一叉树称做最优二叉树或哈夫曼树。

例如,下图中所示的3棵二叉树,都含4个叶子结点a、b、c、d,分别带权7、5、2、4,他们的带权路径长度分别为

哈夫曼树的构造算法

哈夫曼树的构造过程

  1. 根据给定的n个权值{w1,w₂,…,wn},构造n棵只有根结点的二叉树,这n棵二叉树构成一个森林F。
  2. 在森林F中选取两棵根结点的权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为其左、右子树上根结点的权值之和。(选用两小造新树
  3. 在森林F中删除这两棵树,同时将新得到的二叉树加人F中。(删除两小添新人
  4. 重复(2)和(3),直到F只含一棵树为止。这棵树便是哈夫曼树。(重复(2)(3)剩单根

在构造哈夫曼树时,首先选择权小的,这样保证权大的离根较近,这样一来,在计算树的带权路径长度时,自然会得到最小带权路径长度,这种生成算法是一种典型的贪心法。

注:哈夫曼树的结点的度数为0或2,没有度为1的结点。

哈夫曼算法的实现

//-------哈夫曼树的存储表示-------
typedef struct{int weight;//结点的权值int parent,lchild,rchild;//结点的双亲、左孩子、右孩子的下标
}HTNode,*HuffmanTree;//动态分配数组存储哈夫曼树
权值双亲左孩子右孩子
weightparentlchildrchild

包含n棵树的森林经过n-1次合并才能形成哈夫曼树,共产生n-1个新结点

算法:构造哈夫曼树

【算法步骤】

  1. 初始化:首先动态申请2n个单元;然后循环 2n-1次,从1号单元开始,依次将1至2n-1所有单元中的双亲、左孩子、右孩子的下标都初始化为0;最后再循环n次,输入前n个单元中叶子结点的权值。
  2. 创建树:循环n-1次,通过n-1次的选择、删除与合并来创建哈夫曼树。选择是从当前森林中选择双亲为0且权值最小的两个树根结点s1和 s2;删除是指将结点s1 和s2白的双亲改为非 0;合并就是将s1 和 s2的权值和作为一个新结点的权值依次存入到数组的第n+1之后的单元中,同时记录这个新结点左孩子的下标为s1,右孩子的下标为 s2。
void CreateHuffmanTree(HuffmanTree &HT,int n)
{if(n<=1) return;m=2*n-1;HT=new HTNode[m+1];//0号单元未用,所以需要动态分配m+1个单元,HT[m]表示根结点for(i=1;i<=m,++1)//将1~m号单元中的双亲、左孩子,右孩子的下标都初始化为0{HT[i].parnt=0;HT[i].lchild=0;HT[i].rchild=0;}for(i=1;i<=n,++1)//输入前n个单元中叶子结点的权值cin>>HT[i].weight;
/*-----------初始化工作结束,下面开始创建哈夫曼树-----------*/for(i=n+1;i<=n;++1){//通过n-1次的选择、删除、合并来创建哈夫曼树Select(HT,i-1,s1,s2);//在HT[k](1≤k≤i-1)中选择两个其双亲域0且权值最小的结点,并返回它们在HT中的序号s1和s2(最小结点下标)HT[s1].parent=i;HT[s2].parent=i;//修改HT[s1][s2]的parent值HT[i].lchild=s1;HT[i].rchild=s2;//s1,s2分别作为i的左右孩子HT[i].weight=HT[s1].weight+HT[s2].weight;//i的权值为左右孩子之和}
}

已知w=(5,29,7,8,14,23,3,11),构造一棵哈夫曼树,计算树的带权路径长度,并给出构造过程中存储结构HT的初始状态和终结状态。

HT初态
结点iweightparentlchildrchild
15000
229000
37000
48000
514000
623000
73000
811000
9-000
10-000
11-000
12-000
13-000
14-000
15-000
HT的终态
结点iweightparentlchildrchild
15900
2291400
371000
481000
5141200
6231300
73900
8111100
981171
10151234
11191398
122914510
134215116
145815212
1510001314

相关文章:

数据结构—基础知识:哈夫曼树

文章目录 数据结构—基础知识&#xff1a;哈夫曼树哈夫曼树的基本概念哈夫曼树的构造算法哈夫曼树的构造过程哈夫曼算法的实现算法&#xff1a;构造哈夫曼树 数据结构—基础知识&#xff1a;哈夫曼树 哈夫曼树的基本概念 哈夫曼&#xff08;Huffman&#xff09;树又称最优树&…...

计算机网络(第六版)复习提纲24

3 传输控制协议TCP概述 A TCP最主要的特点 1 面向连接的传输层协议 2 每一条TCP连接只能有两个端点&#xff0c;且只能是点对点的 3 提供可靠交付的服务&#xff08;无差错、不丢失、不重复、不乱序&#xff09; 4 全双工通信&#xff0c;两端设有发送缓存和接收缓存 5 面向字节…...

[机器学习]TF-IDF算法

一.TF-IDF算法概述 什么是TF-IDF&#xff1f; 词频-逆文档频率&#xff08;Term Frequency-Inverse Document Frequency&#xff0c;TF-IDF&#xff09;是一种常用于文本处理的统计方法&#xff0c;可以评估一个单词在一份文档中的重要程度。简单来说就是可以用于文档关键词的提…...

Loadbalancer如何优雅分担服务负荷

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Loadbalancer如何优雅分担服务负荷 前言Loadbalancer基础&#xff1a;数字世界的分配大师1. 分发请求&#xff1a;2. 健康检查&#xff1a;3. 会话保持&#xff1a;4. 可伸缩性&#xff1a;5. 负载均衡…...

计算机网络——链路层(1)

计算机网络——链路层&#xff08;1&#xff09; 小程一言专栏链接: [link](http://t.csdnimg.cn/ZUTXU)前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff0c; [跳转到网站](https://www.captainbed.…...

OpenCV 0 - VS2019配置OpenCV

1 配置好环境变量 根据自己的opencv的安装目录配置 2 新建一个空项目 3 打开 视图->工具栏->属性管理器 4 添加新项目属性表 右键项目名(我这是opencvdemo)添加新项目属性表,如果有配置好了的属性表选添加现有属性表 5 双击选中Debug|x64的刚添加的属性表 6 (重点)添…...

eCos flash模拟EEPROM实现NV系统

Flash需要擦除的原因&#xff1a;先擦除后写入的原因是为了工业上制作方便&#xff0c;即物理实现方便。 #include <cyg/infra/diag.h> #include <cyg/io/flash.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> // SPI flash…...

【MongoDB】跨库跨表查询(python版)

MongoDB跨表跨库查询 1.数据准备&#xff1a;2.跨集合查询3.跨库查询应该怎么做&#xff1f; 讲一个简单的例子&#xff0c;python连接mongodb做跨表跨库查询的正确姿势 1.数据准备&#xff1a; use order_db; db.createCollection("orders"); db.orders.insertMan…...

Ruoyi-Cloud-Plus_Nacos配置服务漏洞CVE-2021-29441_官方解决方法以及_修改源码解决---SpringCloud工作笔记199

CVE-2021-29441 这个漏洞是Nacos的,通过使用postman,直接访问接口: 就可以直接添加nacos的用户 Nacos是Alibaba的一个动态服务发现、配置和服务管理平台。攻击者通过添加Nacos-Server的User-Agent头部将可绕过(nacos.core.auth.enabled=true)鉴权认证,从而进行API操作。 …...

和鲸科技与智谱AI达成合作,共建大模型生态基座

近日&#xff0c;上海和今信息科技有限公司&#xff08;简称“和鲸科技”&#xff09;与北京智谱华章科技有限公司&#xff08;简称“智谱AI”&#xff09;签订合作协议&#xff0c;双方将携手推动国产通用大模型的广泛应用与行业渗透&#xff0c;并积极赋能行业伙伴探索领域大…...

计算机网络实验五

目录 实验五 路由器基本配置 1、实验目的 2、实验设备 3、网络拓扑及IP地址分配 4、实验过程 &#xff08;1&#xff09;路由器设备名称的配置 &#xff08;2&#xff09;路由器每日提示信息配置 &#xff08;3&#xff09;路由器端口的IP地址配置 &#xff08;4&…...

通过 React 来构建界面

1- 通过 React 来构建界面 第1步&#xff1a;下载所需要的二个库文件至本地&#xff0c;如果需要加载指定版本的 react 和 react-dom&#xff0c;可以把 18 替换成所需加载的版本号。 react.js&#xff1a;React中的核心库文件。 // 开发版 https://unpkg.com/react18/umd/rea…...

真机调试,微信小程序,uniapp项目在微信开发者工具中真机调试,手机和电脑要连同一个wifi,先清空缓存,页面从登录页进入,再点真机调试,这样就不会报错了

微信小程序如何本地进行真机调试&#xff1f;_unity生成的微信小程序怎么在电脑上真机测试-CSDN博客 微信小程序 真机调试 注意事项 uniapp项目在微信开发者工具中真机调试&#xff0c;手机和电脑要连同一个wifi&#xff0c;先清空缓存&#xff0c;页面从登录页进入&#xf…...

vue3快速入门

文章目录 1. Vue3简介1.1. 性能的提升1.2.源码的升级1.3. 拥抱TypeScript1.4. 新的特性 2. 创建Vue3工程2.1. 基于 vue-cli 创建2.2. 基于 vite 创建&#xff08;推荐&#xff09;vite介绍创建步骤项目结构安装插件项目结构总结 2.3. 一个简单的效果Person.vueApp.vue 3. Vue3核…...

go 问题记录(日志丢失)

问题描述&#xff1a; 在go程序中&#xff0c;通过执行一个命令启动一个子命令&#xff0c;并通过pipe读取子程序的标准输入和输出&#xff0c;通过scanner默认按行读取&#xff0c;此时如果子程序输出时没有携带’\n’&#xff0c;scanner就不会打印输出&#xff0c;而是会累…...

彻底解决 MAC Android Studio gradle async 时出现 “connect timed out“ 问题

最近在编译一个比较老的项目&#xff0c;git clone 之后使用 async 之后出现一下现象&#xff1a; 首先确定是我网络本身是没有问题的&#xff0c;尝试几次重新 async 之后还是出现问题&#xff0c;网上找了一些方法解决了本问题&#xff0c;以此来记录一下问题是如何解决的。 …...

计算机网络第4章(网络层)

4.1、网络层概述 简介 网络层的主要任务是实现网络互连&#xff0c;进而实现数据包在各网络之间的传输 这些异构型网络N1~N7如果只是需要各自内部通信&#xff0c;他们只要实现各自的物理层和数据链路层即可 但是如果要将这些异构型网络互连起来&#xff0c;形成一个更大的互…...

SpringbootWeb案例

准备工作 需求说明 部门管理 部门管理功能开发包括&#xff1a;查询部门列表、删除部门、新增部门、修改部门   员工管理功能开发包括&#xff1a;查询员工列表(分页、条件)、删除员工、新增员工、修改员工 环境搭建 环境搭建步骤&#xff1a;1. 准备数据库表(dept、emp)…...

【初中生讲机器学习】4. 支持向量机算法怎么用?一个实例带你看懂!

创建时间&#xff1a;2024-02-02 最后编辑时间&#xff1a;2024-02-03 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名初三学生&#xff0c;热爱计算机和数学&#xff0c;我们一起加…...

CentOS下安装vlc

一、引言 vlc是一跨多媒体播放器&#xff0c;可以播放本地媒体文件和网络串流&#xff0c;帮助我们排查音视频开发过程中遇到的问题。大部分情况下&#xff0c;我们只需要在Windows系统下安装vlc就可以了。但有一种情况是需要在Linux下安装vlc的&#xff1a;我们的音视频拉流软…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

算术操作符与类型转换:从基础到精通

目录 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符&#xff1a;、-、*、/、% 赋值操作符&#xff1a;和复合赋值 单⽬操作符&#xff1a;、--、、- 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...