当前位置: 首页 > news >正文

Transformer实战-系列教程4:Vision Transformer 源码解读2

🚩🚩🚩Transformer实战-系列教程总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

4、Embbeding类

self.embeddings = Embeddings(config, img_size=img_size)
class Embeddings(nn.Module):"""Construct the embeddings from patch, position embeddings."""def __init__(self, config, img_size, in_channels=3):super(Embeddings, self).__init__()self.hybrid = Noneimg_size = _pair(img_size)if config.patches.get("grid") is not None:grid_size = config.patches["grid"]patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1])n_patches = (img_size[0] // 16) * (img_size[1] // 16)self.hybrid = Trueelse:patch_size = _pair(config.patches["size"])n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])self.hybrid = Falseif self.hybrid:self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers,width_factor=config.resnet.width_factor)in_channels = self.hybrid_model.width * 16self.patch_embeddings = Conv2d(in_channels=in_channels,out_channels=config.hidden_size,kernel_size=patch_size,stride=patch_size)self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))self.dropout = Dropout(config.transformer["dropout_rate"])def forward(self, x):# print(x.shape)B = x.shape[0]cls_tokens = self.cls_token.expand(B, -1, -1)# print(cls_tokens.shape)if self.hybrid:x = self.hybrid_model(x)x = self.patch_embeddings(x)#Conv2d: Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))# print(x.shape)x = x.flatten(2)# print(x.shape)x = x.transpose(-1, -2)# print(x.shape)x = torch.cat((cls_tokens, x), dim=1)# print(x.shape)embeddings = x + self.position_embeddings# print(embeddings.shape)embeddings = self.dropout(embeddings)# print(embeddings.shape)return embeddings

接上前面的debug模式,在构造模型部分一直步入到Embbeding类中:

  1. 构造函数,传入了图像大小224*224,通道数3,以及配置参数
  2. patch_size=[16,16],16*16的区域选出一份特征,这个参数自己定义
  3. n_patches,224224的图像能够切分出1616的格子数量,(224/16)(224/16)=1414=196个
  4. 196就是我们要定义的序列的长度了
  5. patch_embeddings,是一个二维卷积,输入通道为3,输出通道为768,卷积核为patch_size=1616,步长为1616,步长为1616就表明原本224224的图像卷积后的长宽就为14*14了
  6. position_embeddings,初始化参数全部为0 ,形状为[1,197,768],197=196+1,加一的原因是在Transformer模型中,通常会在序列的开始添加一个可学习的类标记(class token),它在训练过程中帮助模型捕获全局信息以用于分类任务。position_embeddings是用来记录位置信息的
  7. cls_token,初始化参数全部为0,形状为[1,1,768]
  8. 因为要涉及到全连接层,所以加上Dropout

5、Encoder类

self.encoder = Encoder(config, vis)
class Encoder(nn.Module):def __init__(self, config, vis):super(Encoder, self).__init__()self.vis = visself.layer = nn.ModuleList()self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)for _ in range(config.transformer["num_layers"]):layer = Block(config, vis)self.layer.append(copy.deepcopy(layer))def forward(self, hidden_states):# print(hidden_states.shape)attn_weights = []for layer_block in self.layer:hidden_states, weights = layer_block(hidden_states)if self.vis:attn_weights.append(weights)encoded = self.encoder_norm(hidden_states)return encoded, attn_weights

接上前面的debug模式,在构造模型部分步入到Encoder类中:

  1. 构造函数传进配置参数
  2. vis,设置可视化
  3. layer,设置PyTorch的一个列表
  4. encoder_norm,LayerNorm,Batch Normalization是对Batch做归一化,LayerNorm对层
  5. 循环添加Block:循环config.transformer["num_layers"]次,每次都创建一个Block实例并添加到self.layer中。这里的Block是一个定义了Transformer编码器层的类,它包括自注意力机制和前馈网络。copy.deepcopy(layer)确保每次都是向ModuleList添加一个新的、独立的Block副本

之前ConvNet的任务中,都是使用Batch 做归一化,为什么Transformer是对Layer做归一化呢,Transformer是在NLP任务中提出来的,每一句话的单词个数都不一样,太长的阶段,短的补0,如果是对batch做归一化,长句子的后面一些地方要和短句子补0的地方做归一化,改用Layer归一化实现显著提升效果的情况。

相关文章:

Transformer实战-系列教程4:Vision Transformer 源码解读2

🚩🚩🚩Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 4、Embbeding类 self.embeddings Embeddings(config, img_sizeimg_size) class Embeddings(nn.…...

cesium-水平测距

cesium测量两点间的距离 <template><div id"cesiumContainer" style"height: 100vh;"></div><div id"toolbar" style"position: fixed;top:20px;left:220px;"><el-breadcrumb><el-breadcrumb-item&…...

【Android-Compose】手势检测实现按下、单击、双击、长按事件,以及避免频繁单击事件的简单方法

目录&#xff1a; 1 不需要双击事件 规避频繁单击事件2 需要双击事件&#xff08;常规写法&#xff09;3 后记&#xff1a;不建议使用上面的代码自定义按钮 1 不需要双击事件 规避频繁单击事件 var firstClickTime by remember { mutableStateOf(System.currentTimeMillis()…...

AUTOSAR汽车电子嵌入式编程精讲300篇-基于神经网络的CAN总线负载率优化(续)

目录 3.3 SA 算法 3.3.1 SA 算法原理 3.3.2 基于 SA 算法 CAN 总线负载率优化分析...

python爬虫6—高性能异步爬虫

如果有多个URL等待我们爬取&#xff0c;我们通常是一次只能爬取一个&#xff0c;爬取效率低&#xff0c;异步爬虫可以提高爬取效率&#xff0c;可以一次多多个URL同时同时发起请求 异步爬虫方式&#xff1a; 一、多线程、多进程&#xff08;不建议&#xff09;&#xff1a;可以…...

日历功能——C语言

实现日历功能&#xff0c;输入年份月份&#xff0c;输出日历 #include<stdio.h>int leap_year(int year) {if(year % 4 0 && year % 100 ! 0 || year % 400 0){return 1;}else{return 0;} }int determine_year_month_day(int *day,int month,int year) {if(mo…...

GPIO中断

1.EXTI简介 EXTI是External Interrupt的缩写&#xff0c;指外部中断。在嵌入式系统中&#xff0c;外部中断是一种用于处理外部事件的机制。当外部事件发生时&#xff08;比如按下按钮、传感器信号变化等&#xff09;&#xff0c;外部中断可以立即打断正在执行的程序&#xff0…...

springboot完成一个线上图片存放地址+实现前后端上传图片+回显

1.路径 注意路径 2.代码&#xff1a;&#xff08;那个imagePath没什么用&#xff0c;懒的删了&#xff09;&#xff0c;注意你的本地文件夹要有图片&#xff0c;才可以在线上地址中打开查看 package com.xxx.common.config;import org.springframework.beans.factory.annotat…...

编程思维与生活琐事的内在关联及其应用价值

随着科技的日益普及和信息化时代的到来&#xff0c;编程作为一种现代技能&#xff0c;其影响已不再局限于专业领域&#xff0c;而是逐步渗透到人们的日常生活之中。探讨编程与生活琐事之间的关系&#xff0c;有助于我们更好地理解如何将技术智慧应用于日常管理&#xff0c;提升…...

OSPF排错

目录 实验拓扑图 实验要求 实验排错 故障一 故障现象 故障分析 故障解决 故障二 故障现象 故障分析 故障解决 故障三 故障现象 故障分析 故障解决 故障四 故障现象 故障分析 故障解决 故障五 故障现象 故障分析 故障解决 故障六 故障现象 故障分析 …...

day07-CSS高级

01-定位 作用&#xff1a;灵活的改变盒子在网页中的位置 实现&#xff1a; 1.定位模式&#xff1a;position 2.边偏移&#xff1a;设置盒子的位置 left right top bottom 相对定位 position: relative 特点&#xff1a; 不脱标&#xff0c;占用自己原来位置 显示模…...

05 MP之ActiveRecord模式+SimpleQuery

1. ActiveRecord ActiveRecord(活动记录&#xff0c;简称AR)&#xff0c;是一种领域模型模式&#xff0c;特点是一个模型类对应关系型数据库中的一个表&#xff0c;而模型类的一个实例对应表中的一行记录。 其目标是通过围绕一个数据对象, 进行全部的CRUD操作。 1.1 让实体类…...

git diff查看比对两次不同时间点提交的异同

git diff查看比对两次不同时间点提交的异同 用 git diff命令&#xff1a; git diff commit-id-1 commit-id-2 不同commit-id在不同的时间点提交产生&#xff0c;因为也可以认为git diff是比对两个不同时间点的代码异同。 git diff比较不同commit版本的代码文件异同_git diff c…...

基于muduo网络库开发服务器程序和CMake构建项目 笔记

跟着施磊老师做C项目&#xff0c;施磊老师_腾讯课堂 (qq.com) 一、基于muduo网络库开发服务器程序 组合TcpServer对象创建EventLoop事件循环对象的指针明确TcpServer构造函数需要什么参数,输出ChatServer的构造函数在当前服务器类的构造函数当中,注册处理连接的回调函数和处理…...

前端支持下载模板、导入数据、导出数据(excel格式)

前言 xlsx是由SheetJS开发的一个处理excel文件的npm库,适用于前端开发者实现下载模板、导入导出excel文件等需求&#xff0c;演示的项目的技术栈为vue3 elementPlus 一. 引入xlsx 安装xlsx npm install xlsx引入xlsx import * as XLSX from xlsx;二. 下载模板 const han…...

编译Faiss-gpu【InterMKL】C++ 按步骤操作 基本不会有问题的 python原理相同。

编译Faiss-gpu C++ 基本介绍 使用Faiss版本【1.7.4】 该项目依赖于BLAS 组件 OpenBLAS 和 IntelMKL BLAS 【官方支持】 IntelMKL 会比 OpenBLAS 快的多。 【来自官方结论】 本机环境 Cuda :11.1 Cuda-Driver: 515 InterMKL: 2021.2.0 Faiss :1.7.4 注意:faiss仅…...

conn.execute的用法详解

conn.execute的用法详解 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;我们将深入研究数据库连接中conn.execute的用法&#xff0c;解析它的功能、…...

GetBuffer() 与 ReleaseBuffer() 使用详解

GetBuffer() 与 ReleaseBuffer() 使用详解 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;我们将深入研究在编程中常用的GetBuffer()与ReleaseBuff…...

Flink CEP(基本概念)

Flink CEP 在Flink的学习过程中&#xff0c;我们已经掌握了从基本原理和核心层的DataStream API到底层的处理函数&#xff0c;再到应用层的Table API和SQL的各种手段&#xff0c;可以应对实际应用开发的各种需求。然而&#xff0c;在实际应用中&#xff0c;还有一类更为复…...

[AIGC] Spring Gateway与 nacos 简介

文章目录 Spring Gateway简介主要特性优点总结 Nacos简介主要特性优点总结 Spring Gateway 简介 Spring Gateway是一个基于Spring Framework的工具&#xff0c;用于构建和管理微服务架构中的网关。它提供了一种简单而灵活的方式来路由和过滤请求&#xff0c;以及在微服务之间…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

[特殊字符] Spring Boot底层原理深度解析与高级面试题精析

一、Spring Boot底层原理详解 Spring Boot的核心设计哲学是约定优于配置和自动装配&#xff0c;通过简化传统Spring应用的初始化和配置流程&#xff0c;显著提升开发效率。其底层原理可拆解为以下核心机制&#xff1a; 自动装配&#xff08;Auto-Configuration&#xff09; 核…...

开疆智能Ethernet/IP转Modbus网关连接鸣志步进电机驱动器配置案例

在工业自动化控制系统中&#xff0c;常常会遇到不同品牌和通信协议的设备需要协同工作的情况。本案例中&#xff0c;客户现场采用了 罗克韦尔PLC&#xff0c;但需要控制的变频器仅支持 ModbusRTU 协议。为了实现PLC 对变频器的有效控制与监控&#xff0c;引入了开疆智能Etherne…...

无头浏览器技术:Python爬虫如何精准模拟搜索点击

1. 无头浏览器技术概述 1.1 什么是无头浏览器&#xff1f; 无头浏览器是一种没有图形用户界面&#xff08;GUI&#xff09;的浏览器&#xff0c;它通过程序控制浏览器内核&#xff08;如Chromium、Firefox&#xff09;执行页面加载、JavaScript渲染、表单提交等操作。由于不渲…...