Transformer实战-系列教程4:Vision Transformer 源码解读2
🚩🚩🚩Transformer实战-系列教程总目录
有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
4、Embbeding类
self.embeddings = Embeddings(config, img_size=img_size)
class Embeddings(nn.Module):"""Construct the embeddings from patch, position embeddings."""def __init__(self, config, img_size, in_channels=3):super(Embeddings, self).__init__()self.hybrid = Noneimg_size = _pair(img_size)if config.patches.get("grid") is not None:grid_size = config.patches["grid"]patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1])n_patches = (img_size[0] // 16) * (img_size[1] // 16)self.hybrid = Trueelse:patch_size = _pair(config.patches["size"])n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])self.hybrid = Falseif self.hybrid:self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers,width_factor=config.resnet.width_factor)in_channels = self.hybrid_model.width * 16self.patch_embeddings = Conv2d(in_channels=in_channels,out_channels=config.hidden_size,kernel_size=patch_size,stride=patch_size)self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))self.dropout = Dropout(config.transformer["dropout_rate"])def forward(self, x):# print(x.shape)B = x.shape[0]cls_tokens = self.cls_token.expand(B, -1, -1)# print(cls_tokens.shape)if self.hybrid:x = self.hybrid_model(x)x = self.patch_embeddings(x)#Conv2d: Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))# print(x.shape)x = x.flatten(2)# print(x.shape)x = x.transpose(-1, -2)# print(x.shape)x = torch.cat((cls_tokens, x), dim=1)# print(x.shape)embeddings = x + self.position_embeddings# print(embeddings.shape)embeddings = self.dropout(embeddings)# print(embeddings.shape)return embeddings
接上前面的debug模式,在构造模型部分一直步入到Embbeding类中:
- 构造函数,传入了图像大小224*224,通道数3,以及配置参数
- patch_size=[16,16],16*16的区域选出一份特征,这个参数自己定义
- n_patches,224224的图像能够切分出1616的格子数量,(224/16)(224/16)=1414=196个
- 196就是我们要定义的序列的长度了
- patch_embeddings,是一个二维卷积,输入通道为3,输出通道为768,卷积核为patch_size=1616,步长为1616,步长为1616就表明原本224224的图像卷积后的长宽就为14*14了
- position_embeddings,初始化参数全部为0 ,形状为[1,197,768],197=196+1,加一的原因是在Transformer模型中,通常会在序列的开始添加一个可学习的类标记(class token),它在训练过程中帮助模型捕获全局信息以用于分类任务。position_embeddings是用来记录位置信息的
- cls_token,初始化参数全部为0,形状为[1,1,768]
- 因为要涉及到全连接层,所以加上Dropout
5、Encoder类
self.encoder = Encoder(config, vis)
class Encoder(nn.Module):def __init__(self, config, vis):super(Encoder, self).__init__()self.vis = visself.layer = nn.ModuleList()self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)for _ in range(config.transformer["num_layers"]):layer = Block(config, vis)self.layer.append(copy.deepcopy(layer))def forward(self, hidden_states):# print(hidden_states.shape)attn_weights = []for layer_block in self.layer:hidden_states, weights = layer_block(hidden_states)if self.vis:attn_weights.append(weights)encoded = self.encoder_norm(hidden_states)return encoded, attn_weights
接上前面的debug模式,在构造模型部分步入到Encoder类中:
- 构造函数传进配置参数
- vis,设置可视化
- layer,设置PyTorch的一个列表
- encoder_norm,LayerNorm,Batch Normalization是对Batch做归一化,LayerNorm对层
- 循环添加
Block:循环config.transformer["num_layers"]次,每次都创建一个Block实例并添加到self.layer中。这里的Block是一个定义了Transformer编码器层的类,它包括自注意力机制和前馈网络。copy.deepcopy(layer)确保每次都是向ModuleList添加一个新的、独立的Block副本
之前ConvNet的任务中,都是使用Batch 做归一化,为什么Transformer是对Layer做归一化呢,Transformer是在NLP任务中提出来的,每一句话的单词个数都不一样,太长的阶段,短的补0,如果是对batch做归一化,长句子的后面一些地方要和短句子补0的地方做归一化,改用Layer归一化实现显著提升效果的情况。
相关文章:
Transformer实战-系列教程4:Vision Transformer 源码解读2
🚩🚩🚩Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 4、Embbeding类 self.embeddings Embeddings(config, img_sizeimg_size) class Embeddings(nn.…...
cesium-水平测距
cesium测量两点间的距离 <template><div id"cesiumContainer" style"height: 100vh;"></div><div id"toolbar" style"position: fixed;top:20px;left:220px;"><el-breadcrumb><el-breadcrumb-item&…...
【Android-Compose】手势检测实现按下、单击、双击、长按事件,以及避免频繁单击事件的简单方法
目录: 1 不需要双击事件 规避频繁单击事件2 需要双击事件(常规写法)3 后记:不建议使用上面的代码自定义按钮 1 不需要双击事件 规避频繁单击事件 var firstClickTime by remember { mutableStateOf(System.currentTimeMillis()…...
AUTOSAR汽车电子嵌入式编程精讲300篇-基于神经网络的CAN总线负载率优化(续)
目录 3.3 SA 算法 3.3.1 SA 算法原理 3.3.2 基于 SA 算法 CAN 总线负载率优化分析...
python爬虫6—高性能异步爬虫
如果有多个URL等待我们爬取,我们通常是一次只能爬取一个,爬取效率低,异步爬虫可以提高爬取效率,可以一次多多个URL同时同时发起请求 异步爬虫方式: 一、多线程、多进程(不建议):可以…...
日历功能——C语言
实现日历功能,输入年份月份,输出日历 #include<stdio.h>int leap_year(int year) {if(year % 4 0 && year % 100 ! 0 || year % 400 0){return 1;}else{return 0;} }int determine_year_month_day(int *day,int month,int year) {if(mo…...
GPIO中断
1.EXTI简介 EXTI是External Interrupt的缩写,指外部中断。在嵌入式系统中,外部中断是一种用于处理外部事件的机制。当外部事件发生时(比如按下按钮、传感器信号变化等),外部中断可以立即打断正在执行的程序࿰…...
springboot完成一个线上图片存放地址+实现前后端上传图片+回显
1.路径 注意路径 2.代码:(那个imagePath没什么用,懒的删了),注意你的本地文件夹要有图片,才可以在线上地址中打开查看 package com.xxx.common.config;import org.springframework.beans.factory.annotat…...
编程思维与生活琐事的内在关联及其应用价值
随着科技的日益普及和信息化时代的到来,编程作为一种现代技能,其影响已不再局限于专业领域,而是逐步渗透到人们的日常生活之中。探讨编程与生活琐事之间的关系,有助于我们更好地理解如何将技术智慧应用于日常管理,提升…...
OSPF排错
目录 实验拓扑图 实验要求 实验排错 故障一 故障现象 故障分析 故障解决 故障二 故障现象 故障分析 故障解决 故障三 故障现象 故障分析 故障解决 故障四 故障现象 故障分析 故障解决 故障五 故障现象 故障分析 故障解决 故障六 故障现象 故障分析 …...
day07-CSS高级
01-定位 作用:灵活的改变盒子在网页中的位置 实现: 1.定位模式:position 2.边偏移:设置盒子的位置 left right top bottom 相对定位 position: relative 特点: 不脱标,占用自己原来位置 显示模…...
05 MP之ActiveRecord模式+SimpleQuery
1. ActiveRecord ActiveRecord(活动记录,简称AR),是一种领域模型模式,特点是一个模型类对应关系型数据库中的一个表,而模型类的一个实例对应表中的一行记录。 其目标是通过围绕一个数据对象, 进行全部的CRUD操作。 1.1 让实体类…...
git diff查看比对两次不同时间点提交的异同
git diff查看比对两次不同时间点提交的异同 用 git diff命令: git diff commit-id-1 commit-id-2 不同commit-id在不同的时间点提交产生,因为也可以认为git diff是比对两个不同时间点的代码异同。 git diff比较不同commit版本的代码文件异同_git diff c…...
基于muduo网络库开发服务器程序和CMake构建项目 笔记
跟着施磊老师做C项目,施磊老师_腾讯课堂 (qq.com) 一、基于muduo网络库开发服务器程序 组合TcpServer对象创建EventLoop事件循环对象的指针明确TcpServer构造函数需要什么参数,输出ChatServer的构造函数在当前服务器类的构造函数当中,注册处理连接的回调函数和处理…...
前端支持下载模板、导入数据、导出数据(excel格式)
前言 xlsx是由SheetJS开发的一个处理excel文件的npm库,适用于前端开发者实现下载模板、导入导出excel文件等需求,演示的项目的技术栈为vue3 elementPlus 一. 引入xlsx 安装xlsx npm install xlsx引入xlsx import * as XLSX from xlsx;二. 下载模板 const han…...
编译Faiss-gpu【InterMKL】C++ 按步骤操作 基本不会有问题的 python原理相同。
编译Faiss-gpu C++ 基本介绍 使用Faiss版本【1.7.4】 该项目依赖于BLAS 组件 OpenBLAS 和 IntelMKL BLAS 【官方支持】 IntelMKL 会比 OpenBLAS 快的多。 【来自官方结论】 本机环境 Cuda :11.1 Cuda-Driver: 515 InterMKL: 2021.2.0 Faiss :1.7.4 注意:faiss仅…...
conn.execute的用法详解
conn.execute的用法详解 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入研究数据库连接中conn.execute的用法,解析它的功能、…...
GetBuffer() 与 ReleaseBuffer() 使用详解
GetBuffer() 与 ReleaseBuffer() 使用详解 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入研究在编程中常用的GetBuffer()与ReleaseBuff…...
Flink CEP(基本概念)
Flink CEP 在Flink的学习过程中,我们已经掌握了从基本原理和核心层的DataStream API到底层的处理函数,再到应用层的Table API和SQL的各种手段,可以应对实际应用开发的各种需求。然而,在实际应用中,还有一类更为复…...
[AIGC] Spring Gateway与 nacos 简介
文章目录 Spring Gateway简介主要特性优点总结 Nacos简介主要特性优点总结 Spring Gateway 简介 Spring Gateway是一个基于Spring Framework的工具,用于构建和管理微服务架构中的网关。它提供了一种简单而灵活的方式来路由和过滤请求,以及在微服务之间…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
