flinksqlbug : AggregateFunction udf Could not extract a data type from
org.apache.flink.table.api.ValidationException: SQL validation failed. An error occurred in the type inference logic of function ‘default_catalog.default_database.CollectSetSort’.
org.apache.flink.table.api.ValidationException: An error occurred in the type inference logic of function ‘default_catalog.default_database.CollectSetSort’.
org.apache.flink.table.api.ValidationException: Could not extract a valid type inference for function class ‘com.xiaomi.cloud.streaming.computing.udagg.CollectSetSort’. Please check for implementation mistakes and/or provide a corresponding hint.
org.apache.flink.table.api.ValidationException: Error in extracting a signature to accumulator mapping.
org.apache.flink.table.api.ValidationException: Unable to extract a type inference from method:
public void com.xiaomi.cloud.streaming.computing.udagg.CollectSetSort.accumulate(java.util.ArrayList,java.lang.Integer)
org.apache.flink.table.api.ValidationException: Could not
相关文章:
flinksqlbug : AggregateFunction udf Could not extract a data type from
org.apache.flink.table.api.ValidationException: SQL validation failed. An error occurred in the type inference logic of function ‘default_catalog.default_database.CollectSetSort’. org.apache.flink.table.api.ValidationException: An error occurred in the t…...
Aigtek高压放大器用途是什么呢
高压放大器在电子领域中扮演着至关重要的角色,其主要作用是将低电压信号放大到更高的电压水平。这种类型的放大器广泛用于各种应用中,以下是高压放大器的用途以及其关键作用的详细介绍。 1、科学研究和实验室应用: 高压放大器在科学研究和实验…...
c++ STL less 的视角
c less 函数在不同的地方感觉所起的作用是不一样的, 这中间原因是 less 的视角不一样, 下面尝试给出解释下, 方便记忆 1、 左右视角 符合 排序sort less(value, element) less 表示一种 “符合关系“, 表示sort 后…...
MQ面试题整理(持续更新)
1. MQ的优缺点 优点:解耦,异步,削峰 缺点: 系统可用性降低 系统引入的外部依赖越多,越容易挂掉。万一 MQ 挂了,MQ 一挂,整套系统崩 溃,你不就完了?系统复杂度提高 硬生…...
2401cmake,学习cmake2
步4:安装与测试 现在开始给项目添加安装规则和支持测试. 安装规则 安装规则非常简单:对MathFunctions,想安装库和头文件,对应用,想安装可执行文件和配置头. 所以在MathFunctions/CMakeLists.txt尾添加: install(TARGETS MathFunctions DESTINATION lib) install(FILES Mat…...
理解Jetpack Compose中的`remember`和`mutableStateOf`
理解Jetpack Compose中的remember和mutableStateOf 在现代Android开发中,Jetpack Compose已经成为构建原生UI的首选工具。它引入了一种声明式的编程模式,极大地简化了UI开发。在Compose的世界里,remember和mutableStateOf是两个非常关键的函…...
3D力导向树插件-3d-force-graph学习002
一、实现效果:节点文字同时展示 节点显示不同颜色节点盒label文字并存节点上添加点击事件 二、利用插件:CSS2DRenderer 提示:以下引入文件均可在安装完3d-force-graph的安装包里找到 三、关键代码 提示:模拟数据可按如下格式填…...
QXlsx Qt操作excel
QXlsx 是一个用于处理Excel文件的开源C库。它允许你在你的C应用程序中读取和写入Microsoft Excel文件(.xlsx格式)。该库支持多种操作,包括创建新的工作簿、读取和写入单元格数据、格式化单元格、以及其他与Excel文件相关的功能。 支持跨平台…...
Node.js 包管理工具
一、概念介绍 1.1 包是什么 『包』英文单词是 package ,代表了一组特定功能的源码集合 1.2 包管理工具 管理『包』的应用软件,可以对「包」进行 下载安装 , 更新 , 删除 , 上传 等操作。 借助包管理工具࿰…...
PyTorch 2.2 中文官方教程(十七)
(Beta)使用缩放点积注意力(SDPA)实现高性能 Transformer 原文:pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html 译者:飞龙 协议:CC BY-NC-SA 4.0 注意 点击这…...
Failed at the chromedriver@2.27.2 install script.
目录 【错误描述】Failed at the chromedriver2.27.2 install script. npm install报的错误 【解决方法】 删除node_modules文件夹npm install chromedriver --chromedriver_cdnurlhttp://cdn.npm.taobao.org/dist/chromedrivernpm install 【未解决】 下载该zip包运行这个&…...
OpenResty 安装
安装OpenResty 1.安装 首先你的Linux虚拟机必须联网 1)安装开发库 首先要安装OpenResty的依赖开发库,执行命令: yum install -y pcre-devel openssl-devel gcc --skip-broken2)安装OpenResty仓库 你可以在你的 CentOS 系统中…...
套路化编程 C# winform 自适应缩放布局
本例程实现基本的自适应缩放布局。 在本例程中你将会学习到如何通过鼠标改变界面比例(SplitContainer)、如何使用流布局(FlowLayoutPanel)排列控件,当然首先需要了解如何设置控件随窗口缩放。 目录 创建项目 编辑…...
源码梳理(3)MybatisPlus启动流程
文章目录 1,MybatisPlus的使用示例2,BaseMapper方法的执行2,1 MybatisMapperProxy代理对象2.2 InvocationHandler接口(JDK动态代理)2.3 MapperMethodInvoker接口2.4 MybatisMapperMethod 3,SqlSession的执行流程3.1 Sq…...
《学成在线》微服务实战项目实操笔记系列(P1~P49)【上】
《学成在线》项目实操笔记系列【上】,跟视频的每一P对应,全系列12万字,涵盖详细步骤与问题的解决方案。如果你操作到某一步卡壳,参考这篇,相信会带给你极大启发。同时也欢迎大家提问与讨论,我会尽力帮大家解…...
两种添加删除属性字段的方法
水经微图(简称“微图”)中的图层均有属性字段,无论是复合图层,还是点线面图层的字段都可以根据实际情况进行添加或删除。 这里,就为你分享两种添加删除字段的方法。 添加删除字段方法一 当需要添加删除图层的属性字…...
ObjectMapper之处理JSON序列化和反序列化
目录 基本示例Java 对象转 JSON 字符串(序列化)JSON 字符串转 Java 对象(反序列化) 高级特性忽略未知属性使用注解自定义序列化 当然可以。让我们通过更详细的例子来探索 ObjectMapper 的使用,包括基本的序列化和反序…...
Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(八)
原文:Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 译者:飞龙 协议:CC BY-NC-SA 4.0 第十八章:强化学习 强化学习(RL)是当今最激动人心的机器学习领域之一,也是最古老…...
【51单片机】直流电机实验和步进电机实验
目录 直流电机实验直流电机介绍ULN2003 芯片介绍硬件设计软件设计实验现象 步进电机实验步进电机简介步进电机的工作原理步进电机极性区分双极性步进电机驱动原理单极性步进电机驱动原理细分驱动原理 28BYJ-48 步进电机简介软件设计 橙色 直流电机实验 在未学习 PWM 之前&…...
django+flask网上购物商城系统的设计与实现python-vue
全球经济在快速的发展,中国更是进步飞速,这使得国内的互联网技术进入了发展的高峰时期,这让中外资本不断转向互联网这个大市场[3]。在这个信息高度发达的现在,利用网络进行信息管理改革已经成为了人们追捧的一种趋势。“网上购物系…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
node.js的初步学习
那什么是node.js呢? 和JavaScript又是什么关系呢? node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说, 需要在node.js的环境上进行当JavaScript作为前端开发语言来说,需要在浏览器的环境上进行 Node.js 可…...
Linux-进程间的通信
1、IPC: Inter Process Communication(进程间通信): 由于每个进程在操作系统中有独立的地址空间,它们不能像线程那样直接访问彼此的内存,所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...
李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...
