机器学习之DeepSequence软件使用学习1
简介
DeepSequence 是一个生成性的、无监督的生物序列潜变量模型。给定一个多重序列比对作为输入,它可以用来预测可获得的突变,提取监督式学习的定量特征,并生成满足明显约束的新序列文库。它将序列中的高阶依赖性建模为残差子集之间约束的非线性组合。要了解更多信息,请查看论文(https://www.biorxiv.org/content/early/2017/12/18/235655.1)和下面的例子。
为了便于分析,我们建议使用 EVcouplings package(https://github.com/debbiemarkslab/EVcouplings)程序包生成对齐,尽管可以使用任何序列比对。
例子
对于合理的培训时间,我们建议在 GPU 上培训 DeepSequence:
THEANO_FLAGS='floatX=float32,device=cuda' python run_svi.py
但是,它可以在 CPU 上运行:
python run_svi.py
示例子文件夹中的 iPython 笔记本中提供了该分析的其他用法示例和特性。
注:.ipynb结尾的文件格式需要用jupyter notebook打开。
例子1-1 下载例子文件中需要的数据(shell中运行)
bash download_alignments.sh
bash download_pretrained.sh
注:这里有个bug,下载后的aligments文件放在了example下的aligments文件夹下,后面发现例子文件中给出的调用代码中使用的地址是datasets文件夹下,这里确实是例子文件中的调用地址写错了,我是将这个aligments文件夹名更改成了datasets,后续才能正常运行。
例子1-2 探索模型的输出
import theano
import numpy as np
import sys
#Theano是一个Python库,专门用于定义、优化、求值数学表达式,效率高,适用于多维数组类型深度学习库。
#在数据分析和机器学习中,大量的使用科学计算,Numpy 提供了大型矩阵计算的方式,而这些是 python 标准库中所缺少的。
#sys模块是与python解释器交互的一个接口。sys 模块提供了许多函数和变量来处理 Python 运行时环境的不同部分。
%matplotlib inline
import matplotlib.pyplot as plt
注:我在运行%matplotlib inline时报错
>>> %matplotlib inlineFile "<stdin>", line 1%matplotlib inline^
SyntaxError: invalid syntax
这是因为我是直接使用的linux系统中的原生python,而该命令属于jupyter notebook的中魔法命令,修改后的命令如下
import theano
import numpy as np
import sys
import matplotlib
#Matplotlib允许数据科学家通过创建各种图表(如折线图、散点图、直方图等)深入探索数据。通过可视化数据,数据科学家可以更直观地理解数据的分布、趋势和异常值,为进一步的分析提供基础。
matplotlib.use('TkAgg')
#%matplotlib inline
import matplotlib.pyplot as plt
例子1-3 加载DeepSequence软件的本地模块
sys.path.insert(0, "../DeepSequence")import model
import helper
import train
#这里的导入的三个模块式DeepSequence目录下的三个本地模块

例子1-4 构建模型
data_params = {"dataset":"BLAT_ECOLX"}
#这里表示
#这里定义的data_patams变量将在helper模块定义的def gen_job_string函数中使用,该函数包含两个参数,分别是data_params和model_params
data_helper = helper.DataHelper(dataset=data_params["dataset"],working_dir=".",calc_weights=False)model_params = {"batch_size" : 100,"encode_dim_zero" : 1500,"encode_dim_one" : 1500,"decode_dim_zero" : 100,"decode_dim_one" : 500,"n_patterns" : 4,"n_latent" : 30,"logit_p" : 0.001,"sparsity" : "logit","encode_nonlin" : "relu","decode_nonlin" : "relu","final_decode_nonlin": "sigmoid","output_bias" : True,"final_pwm_scale" : True,"conv_pat" : True,"d_c_size" : 40}vae_model = model.VariationalAutoencoder(data_helper,batch_size = model_params["batch_size"],encoder_architecture = [model_params["encode_dim_zero"],model_params["encode_dim_one"]],decoder_architecture = [model_params["decode_dim_zero"],model_params["decode_dim_one"]],n_latent = model_params["n_latent"],n_patterns = model_params["n_patterns"],convolve_patterns = model_params["conv_pat"],conv_decoder_size = model_params["d_c_size"],logit_p = model_params["logit_p"],sparsity = model_params["sparsity"],encode_nonlinearity_type = model_params["encode_nonlin"],decode_nonlinearity_type = model_params["decode_nonlin"],final_decode_nonlinearity = model_params["final_decode_nonlin"],output_bias = model_params["output_bias"],final_pwm_scale = model_params["final_pwm_scale"],working_dir = ".")print ("Model built")
显示结果
Encoding sequences
Neff = 8355.0
Data Shape = (8355, 253, 20)
Model built
注:由于使用的原生python解释器,这里每一部分我都是分开运行的。
首先,这里的data_params = {"dataset":"BLAT_ECOLX"}指的是定义了一个键值对的变量,该函数稍后会使用在helper模块的def gen_job_string函数中
例子1-5 构建模型(装载训练好的参数)
file_prefix = "BLAT_ECOLX"vae_model.load_parameters(file_prefix=file_prefix)print ("Parameters loaded")
结果
Parameters loaded
例子1-5 打印目标序列的信息
打印
print (data_helper.focus_seq_name)
print (str(data_helper.focus_start_loc)+"-"+str(data_helper.focus_stop_loc))
print (data_helper.focus_seq)
结果
>BLAT_ECOLX/24-286
24-286
hpetlVKVKDAEDQLGARVGYIELDLNSGKILeSFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGErGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIkhw
例子1-6 去除小写字母
print ("".join(data_helper.focus_seq_trimmed))
结果
VKVKDAEDQLGARVGYIELDLNSGKILSFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGEGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLI
例子1-7 求一下模型序列的潜在变量
focus_seq_one_hot = np.expand_dims(data_helper.one_hot_3D(data_helper.focus_seq_trimmed),axis=0)
mu_blat, log_sigma_blat = vae_model.recognize(focus_seq_one_hot)
print ("mu:")
print (mu_blat[0])
print ("\nlog sigma:")
print (log_sigma_blat[0])
结果
mu:
[-2.93129622e-02 2.80484591e-02 4.74045508e-02 2.08589889e-02-1.58986675e-02 -1.26072732e+00 -1.66292705e-02 1.40488074e+001.67025877e-02 -8.53566889e-03 2.18774280e-02 2.32125783e+002.55409795e-02 -1.15651891e-02 -3.02552657e-02 1.24139726e-02-4.12962164e-02 -8.41912007e-01 -5.99993306e-03 1.61336532e-036.03782405e-01 3.46253082e-02 2.27598501e-02 -2.05355599e-023.94717697e-03 1.35123502e+00 8.65776037e-03 -7.57649777e-033.81364257e-02 -2.08573404e-02]log sigma:
[-4.22987289e-04 -1.84314600e-02 -4.19494449e-02 -3.17123838e-02-1.67881093e-02 -2.28357830e+00 -5.77861108e-02 -9.92522460e-01-3.17816964e-02 -1.74817094e-02 -4.95498244e-02 -1.99601526e+00-2.00790022e-02 2.04198661e-02 -1.36289102e-02 -6.93278173e-03-2.53706808e-02 -1.90622283e+00 -2.70597848e-02 -1.67551476e-02-2.16649542e+00 1.02254690e-02 8.96915176e-03 -1.85787921e-022.56248426e-02 -2.42973459e+00 -3.70118837e-02 1.25962615e-022.43832070e-02 -6.73871211e-03]
例子1-8 从中取样
z_blat = vae_model.encode(focus_seq_one_hot)
print ("z:")
print (z_blat[0])
结果
z:
[ 1.226298 -0.50005774 -0.05264941 0.66986938 -0.71224884 -1.159214930.05177535 1.1583736 0.92446647 -0.14730169 0.78172059 2.356288461.32076451 1.1621947 -0.12593087 -0.49765921 0.55820479 -0.84410041-1.94164654 1.19722414 0.51352968 0.23148123 0.56776408 -0.36881278-0.590448 1.50986844 0.68191917 -1.4255378 -0.08560662 1.08017904]
例子1-9 然后通过采样的潜在变量生成序列周围的样本分布
seq_reconstruct = vae_model.decode(z_blat)
plt.figure(figsize=(35,10))
plt.imshow(seq_reconstruct[0].T,cmap=plt.get_cmap("Blues"))
ax = plt.gca()
ax.set_yticks(np.arange(len(data_helper.alphabet)))
ax.set_yticklabels(list(data_helper.alphabet))
plt.show()
结果

相关文章:
机器学习之DeepSequence软件使用学习1
简介 DeepSequence 是一个生成性的、无监督的生物序列潜变量模型。给定一个多重序列比对作为输入,它可以用来预测可获得的突变,提取监督式学习的定量特征,并生成满足明显约束的新序列文库。它将序列中的高阶依赖性建模为残差子集之间约束的非…...
【Kotlin】Kotlin环境搭建
1 前言 Kotlin 是一种现代但已经成熟的编程语言,由 JetBrains 公司于 2011 年设计和开发,并在 2012 年开源,在 2016 年发布 v1.0 版本。在 2017 年,Google 宣布 Kotlin 正式成为 Android 开发语言,这进一步推动了 Kotl…...
langgraph学习--创建基本的agent执行器
本文介绍如何使用langgraph创建一个基本的Agent执行器,主要包括下面几个步骤: 1、定义工具 2、创建langchain Agent(由LLM、tools、prompt三部分组成) 3、定义图形状态 传统的LangChain代理的状态有几个属性: (1&#…...
Mybatis中的sql-xml延迟加载机制
Mybatis中的sql-xml延迟加载机制 hi,我是阿昌,今天记录一下关于Mybatis中的sql-xml延迟加载机制 一、前言 首先mybatis技术本身就不多介绍,说延迟加载机制之前,那要先知道2个概念: 主查询对象关联对象 假设咱们现…...
【Linux系统学习】1.初识Linux
初识Linux 操作系统概述 初识Linux 虚拟机介绍 VMware WorkStation安装 1.操作系统概述 了解操作系统的作用 了解常见的操作系统 1.1 硬件和软件 计算机由哪两个主要部分组成? 硬件:计算机系统中由电子,机械和光电元件等组成的各种物理装置的…...
政安晨:政安晨:机器学习快速入门(三){pandas与scikit-learn} {模型验证及欠拟合与过拟合}
这一篇中,咱们使用Pandas与Scikit-liarn工具进行一下模型验证,之后再顺势了解一些过拟合与欠拟合,这是您逐渐深入机器学习的开始! 模型验证 评估您的模型性能,以便测试和比较其他选择。 在上一篇中,您已经…...
分享65个节日PPT,总有一款适合您
分享65个节日PPT,总有一款适合您 65个节日PPT下载链接:https://pan.baidu.com/s/1hc1M5gfYK8eDxQVsK8O9xQ?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易。知…...
架构学习(二):原生scrapy如何接入scrapy-redis,初步入局分布式
原生scrapy如何接入scrapy-redis,实现初步入局分布式 前言scrpy-redis分布式碎语 实现流程扩展结束 前言 scrpy-redis分布式 下图是scrpy-redis官方提供的架构图,按我理解,与原生scrapy的差异主要是把名单队列服务器化,也是存储…...
第1节、电路连接【51单片机+L298N步进电机系列】
↑↑↑点击上方【目录】,查看本系列全部文章 摘要:本节介绍如何搭建一个51单片机L298N步进电机控制电路,所用材料均为常见的模块,简单高效的方式搭建起硬件环境。 一、硬件清单 ①51单片机模块 ②恒流模块 ③开关电源 ④L298N模…...
API接口文档怎么写?
API接口文档模板 本文档更新时间:2022-12-07 本文档更新说明:提供了接口文档模板,后续如果有接口文档编写相关工作,可以参考该模板。 接口名称: XX帐号基础信息批量获取接口 【接口名称,见名知意】 接口…...
Qt 范例阅读: QStateMachine状态机框架 和 SCXML 引擎简单记录(方便后续有需求能想到这两个东西)
一、QStateMachine 简单应用: 实现按钮的文本切换 QStateMachine machine; //定义状态机(头文件定义)QState *off new QState(); //添加off 状态off->assignProperty(ui->pushButton_2, "text", "Off"); //绑定该…...
Linux实验记录:使用DHCP动态管理主机地址
前言: 本文是一篇关于Linux系统初学者的实验记录。 参考书籍:《Linux就该这么学》 实验环境: VmwareWorkStation 17——虚拟机软件 RedHatEnterpriseLinux[RHEL]8——红帽操作系统 备注: 动态主机配置协议(DHCP&…...
Qt应用软件【协议篇】MQTT协议介绍
文章目录 MQTT简介QT中MQTT的源码什么是 MQTT?MQTT 的工作原理MQTT 的工作流程MQTT 的应用场景智能家居工业物联网(IIoT)车联网环境监测医疗健康物流与供应链智能能源公共安全基于传输层TCP协议上的MQTT应用层协议...
Linux ncftp命令教程:如何使用ncftp来管理FTP服务器(附实例详解和注意事项)
Linux ncftp命令介绍 ncftp是一种增强的FTP客户端程序,它可以让你在本地和远程服务器之间传输文件,并管理远程服务器上的文件和目录。ncftp具有许多特色,包括显示传输速率,下载进度,自动续传,标记书签&…...
2、ChatGPT 在数据科学中的应用
ChatGPT 在数据科学中的应用 ChatGPT 可以成为数据科学家的绝佳工具。以下是我所了解到的关于它擅长的地方和不那么擅长的地方。 我从使用 ChatGPT 中学到了一个教训。它在数据科学中非常有帮助,但你必须仔细检查它输出的所有内容。它非常适合某些任务,并且可以非常快速准确…...
从小白到入门webrtc音视频通话
0. 写在前面 先会骑车,再研究为什么这么骑,才是我认为学习技术的思路,底部付了demo例子,根据例子上面的介绍即可运行。 1. 音视频通话要用到的技术简介 websocket 介绍:1. 服务器可以向浏览器推送信息;2…...
Qt之漂亮的地球
这个画的是一个东西围绕着中心的地球不停的旋转,可以放在界面的中部,增加美感。 展示 界面展示 设计过程 标题在之前的博客有写过,这里不再重复 下面是关于地球旋转的相关 1.资源文件添加 先将相关的资源文件添加,三个图片 2…...
FPGA解码MIPI视频:Xilinx Artix7-35T低端FPGA,基于MIPI CSI-2 RX Subsystem架构实现,提供工程源码和技术支持
目录 1、前言免责声明 2、相关方案推荐我这里已有的 MIPI 编解码方案本方案在Xilinx Artix7-100T上解码MIPI视频的应用本方案在Xilinx Kintex7上解码MIPI视频的应用本方案在Xilinx Zynq7000上解码MIPI视频的应用本方案在Xilinx Zynq UltraScale上解码MIPI视频的应用纯VHDL代码解…...
使用docker部署Kafka(MAC Apple M2 Pro)
前置准备 下载适用于Apple M2 Pro的Zookeeper和Kafka Docker镜像 docker pull zookeeper:3.6 docker pull cppla/kafka-docker:arm 下载成功后确认镜像无误 docker images 部署Zookeeper 执行部署命令后查看容器是否启动 docker run -d --name zookeeper -p 2181:2181 -…...
车位检测,YOLOV8,OPENCV调用
车位检测YOLOV8NANO,opencv调用 车位检测,YOLOV8NANO,训练得到PT模型,然后转换成ONNX,OPENCV的DNN调用,支持C,PYTHON,ANDROID...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤: 第一步: 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为: // 改为 v…...
相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...
Python异步编程:深入理解协程的原理与实践指南
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 持续学习,不断…...
