回归预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测
回归预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测
目录
- 回归预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测
- 预测效果
- 基本描述
- 程序设计
- 参考资料
预测效果
基本描述
1.Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测(完整源码和数据)
2.Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测;
3.数据集为excel,输入7个特征,输出1个变量,运行主程序main.m即可,其余为函数文件,无需运行;
4.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;运行环境Matlab2018b及以上.
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据获取方式资源出下载 Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测。
%% 参数设置
fun = @getObjValue; % 目标函数
dim = inputnum * hiddennum + hiddennum * outputnum + ...hiddennum + outputnum; % 优化参数个数
lb = -1 * ones(1, dim); % 优化参数目标下限
ub = 1 * ones(1, dim); % 优化参数目标上限
pop = 20; % 数量
Max_iteration = 20; % 最大迭代次数 %% 优化算法
[Best_score,Best_pos,curve] = POA(pop, Max_iteration, lb, ub, dim, fun); %% 把最优初始阀值权值赋予网络预测
w1 = Best_pos(1 : inputnum * hiddennum);
B1 = Best_pos(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = Best_pos(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum + hiddennum + hiddennum*outputnum);
B2 = Best_pos(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

回归预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测
回归预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现POA-BP鹈鹕算法优化BP神经网络多变量回归预测(完整源码…...

基于java+springboot+vue实现的房屋租赁管理系统(文末源码+Lw)23-142
第1章 绪论 房屋租赁管理系统管理系统按照操作主体分为管理员和用户。管理员的功能包括报修管理、字典管理、租房房源管理、租房评价管理、房源租赁管理、租房预约管理、论坛管理、公告管理、投诉建议管理、用户管理、租房合同管理、管理员管理。用户的功能等。该系统采用了My…...

ubuntu20安装mongodb
方法一:直接安装(命令是直接从mongo官网Install MongoDB Community Edition on Ubuntu — MongoDB Manual复制的) cat /etc/lsb-release sudo apt-get install -y gnupg curl curl -fsSL https://www.mongodb.org/static/pgp/server-7.0.asc | \sudo gp…...

java面试题:MySQL中的各种JOIN的区别
表关联是频率非常高的一种数据库操作,在MySQL中,这种JOIN操作有很多类型,包括内联接、左外连接、右外连接等等,而每种连接的含义都不一样,如果死记硬背,不仅很难记住,而且也容易搞混淆ÿ…...

C语言数组与扫雷游戏实现(详解)
扫雷游戏的功能说明 使⽤控制台实现经典的扫雷游戏游戏可以通过菜单实现继续玩或者退出游戏扫雷的棋盘是9*9的格子默认随机布置10个雷可以排查雷 ◦ 如果位置不是雷,就显示周围有几个雷 ◦ 如果位置是雷,就炸死游戏结束 ◦ 把除10个雷之外的所有雷都找出来,排雷成功,游戏结…...

C#调用WechatOCR.exe实现本地OCR文字识别
最近遇到一个需求:有大量的扫描件需要还原为可编辑的文本,很显然需要用到图片OCR识别为文字技术。本来以为这个技术很普遍的,结果用了几个开源库,效果不理想。后来,用了取巧的方法,直接使用了WX的OCR识别模…...
ComfyUI 学习笔记
目录 ComfyUI 入门教程 什么是ComfyUI? windows安装教程: 组件技巧学习 ComfyUI 入门教程 老V带你学comfyUI-基础入门 - 知乎 什么是ComfyUI? ComfyUI 是一个基于节点的 GUI,用于Stable Diffusion。你可以通过将不同的no…...

基于Linux的HTTP代理服务器搭建与配置实战
在数字化世界中,HTTP代理服务器扮演着至关重要的角色,它们能够帮助我们管理网络请求、提高访问速度,甚至在某些情况下还能保护我们的隐私。而Linux系统,凭借其强大的功能和灵活性,成为了搭建HTTP代理服务器的理想选择。…...

创建一个Vue项目(含npm install卡住不动的解决)
目录 1 安装Node.js 2 使用命令提示符窗口创建Vue 2.1 打开命令提示符窗口 2.2 初始Vue项目 2.2.1 npm init vuelatest 2.2.2 npm install 3 运行Vue项目 3.1 命令提示符窗口 3.2 VSCode运行项目 1 安装Node.js 可以看我的这篇文章《Node.js的安装》 2 使用命令提示…...
npm_config_xxx
// package.json{ "scripts": { "log": "node index.js", } }// index.js function logProcessEnv(key){ console.log(process.env[${key}], process.env[key]); } logProcessEnv(npm_config_foo); 问题: npm run log 和 yarn log…...
P8756 [蓝桥杯 2021 省 AB2] 国际象棋 状压dp统计情况数的一些小理解
目录 建议有状压基础再食用:本题的状态转移方程是 dp代码片:参考代码 建议有状压基础再食用: n行m列 等价 n列m行 ,因为n比较小,int是32位足够了,我们用比特位统计每一行的状态。 本题的状态转移方程是 dp[h][i][j]…...

春节放大招,阿里通义千问Qwen1.5开源发布
2月6日阿里发布了通义千问1.5版本,包含6个大小的模型,“Qwen” 指的是基础语言模型,而 “Qwen-Chat” 则指的是通过后训练技术如SFT(有监督微调)和RLHF(强化学习人类反馈)训练的聊天模型。 模型…...

grafana+prometheus+hiveserver2(jmx_exporter+metrics)
一、hiveserver2开启metrics,并启动jmx_exporter 1、修改hive-site.xml文件开启metrics <property><name>hive.server2.metrics.enabled</name><value>true</value> </property> <property><name>hive.service.m…...
Redis系列——Lua脚本和redis事务的应用
介绍 Lua脚本 背景 Redis是一种抽象数据类型的特定领域语言,由各种命令组成。大多数命令专门用于操作不通的数据类型。每次发送命令均需要执行至此网络请求。所以Redis提供了一个编程接口,支持服务器执行用户自定义的任意脚本。有助于减少网络流量&am…...
rtt设备驱动框架面向对象学习-i2c总线
本来想着i2c和spi是一样的,标题都想抄袭成《rtt设备驱动框架学习-i2c总线和设备》,然后看过源码发现,i2c没有分开总线和设备,我想着正常它和spi一样有总线和设备,设备存在竞争。估计是因为i2c设备可以通过i2c地址区分&…...

Golang 基础 Go Modules包管理
Golang 基础 Go Modules包管理 在 Go 项目开发中,依赖包管理是一个非常重要的内容,依赖包处理不好,就会导致编译失败,本文将系统介绍下 Go 的依赖包管理工具。 我会首先介绍下 Go 依赖包管理工具的历史,并详细介绍下…...
图数据库 之 Neo4j - 背景介绍(1)
引言 Neo4j是一种高性能的图数据库,它专门设计用于存储、管理和查询大规模的图数据。与传统的关系型数据库不同,Neo4j以图的形式存储数据,其中节点表示实体,边表示实体之间的关系。这种图数据模型非常适合表示复杂的关系和连接。…...
JAVA中的单例模式->饿汉式
一、步骤 1.构造器私有化>防止直接new // 步骤一、构造器私有化>防止直接new private GirlFriend(String name){System.out.println("构造器被调用");this.name name; } 2.类的内部创建对象 // 步骤二、类的内部创建对象(该对象是static&#x…...

从零开始手写mmo游戏从框架到爆炸(三)— 服务启动接口与网络事件监听器
导航:从零开始手写mmo游戏从框架到爆炸(零)—— 导航-CSDN博客 上一章我们完成了netty服务启动的相关抽象(https://blog.csdn.net/money9sun/article/details/136025471),这一章我们再新增一个全…...

git 合并多条提交记录
我要合并多条提交记录(合并前7条为一条),实现如下效果: 使用git rebase // 查看前10个commit git log -10 // 将7个commit压缩成一个commit;注意:vim编辑器 git rebase -i HEAD~4 // add已经跟踪的文件 g…...

IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...

《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...
Neo4j 完全指南:从入门到精通
第1章:Neo4j简介与图数据库基础 1.1 图数据库概述 传统关系型数据库与图数据库的对比图数据库的核心优势图数据库的应用场景 1.2 Neo4j的发展历史 Neo4j的起源与演进Neo4j的版本迭代Neo4j在图数据库领域的地位 1.3 图数据库的基本概念 节点(Node)与关系(Relat…...
【系统架构设计师-2025上半年真题】综合知识-参考答案及部分详解(回忆版)
更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 【第1题】【第2题】【第3题】【第4题】【第5题】【第6题】【第7题】【第8题】【第9题】【第10题】【第11题】【第12题】【第13题】【第14题】【第15题】【第16题】【第17题】【第18题】【第19题】【第20~21题】【第…...
生成对抗网络(GAN)损失函数解读
GAN损失函数的形式: 以下是对每个部分的解读: 1. , :这个部分表示生成器(Generator)G的目标是最小化损失函数。 :判别器(Discriminator)D的目标是最大化损失函数。 GAN的训…...
板凳-------Mysql cookbook学习 (十--2)
5.12 模式匹配中的大小写问题 mysql> use cookbook Database changed mysql> select a like A, a regexp A; ------------------------------ | a like A | a regexp A | ------------------------------ | 1 | 1 | --------------------------…...