当前位置: 首页 > news >正文

【附代码】NumPy加速库NumExpr(大数据)

文章目录

    • 相关文献
    • 测试电脑配置
    • 数组加减乘除
    • 数组乘方
    • Pandas加减乘除
    • 总结

作者:小猪快跑

基础数学&计算数学,从事优化领域5年+,主要研究方向:MIP求解器、整数规划、随机规划、智能优化算法

如有错误,欢迎指正。如有更好的算法,也欢迎交流!!!——@小猪快跑

相关文献

  • NumExpr Documentation Reference — numexpr 2.8.5.dev1 documentation

测试电脑配置

博主三千元电脑的渣渣配置:

CPU model: AMD Ryzen 7 7840HS w/ Radeon 780M Graphics, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

数组加减乘除

我们计算 2 * a + 3 * b,发现在数据量较大时候,NumExpr明显快于NumPy
在这里插入图片描述

import perfplot
from matplotlib import pyplot as plt
import numpy as np
import numexpr as nedef numpy_add(a, b):return 2 * a + 3 * bdef numexpr_add(a, b):return ne.evaluate("2 * a + 3 * b")if __name__ == '__main__':b = perfplot.bench(setup=lambda n: (np.random.rand(n), np.random.rand(n)),kernels=[numpy_add,numexpr_add,],n_range=[2 ** k for k in range(25)],xlabel="length of DataFrame",)plt.figure(dpi=300)b.save(f"arr_add.png")b.show()

数组乘方

我们计算 2 * a + b ** 10,发现在数据量较大时候,NumExpr明显快于NumPy
在这里插入图片描述

import perfplot
from matplotlib import pyplot as plt
import numpy as np
import numexpr as nedef numpy_power(a, b):return 2 * a + b ** 10def numexpr_power(a, b):return ne.evaluate("2 * a + b ** 10")if __name__ == '__main__':b = perfplot.bench(setup=lambda n: (np.random.rand(n), np.random.rand(n)),kernels=[numpy_power,numexpr_power,],n_range=[2 ** k for k in range(25)],xlabel="length of DataFrame",)plt.figure(dpi=300)b.save(f"arr_power.png")b.show()

Pandas加减乘除

我们计算 (a + b) / (c - 1),发现在数据量较大时候,NumExpr明显快于Pandas

在这里插入图片描述

import pandas as pd
import perfplot
from matplotlib import pyplot as plt
from numpy.random._examples.cffi.extending import rng
import numexpr as nedef pandas_add(df):return (df['A'] + df['B']) / (df['C'] - 1)def numexpr_add(df):return df.eval('(A + B) / (C - 1)')def numpy_arr_add(df):a = df['A'].valuesb = df['B'].valuesc = df['C'].valuesreturn (a + b) / (c - 1)def numexpr_arr_add(df):a = df['A'].valuesb = df['B'].valuesc = df['C'].valuesreturn ne.evaluate("(a + b) / (c - 1)")if __name__ == '__main__':b = perfplot.bench(setup=lambda n: pd.DataFrame(rng.random((n, 3)), columns=['A', 'B', 'C']),kernels=[pandas_add,numexpr_add,numpy_arr_add,numexpr_arr_add,],n_range=[2 ** k for k in range(25)],xlabel="length of DataFrame",)plt.figure(dpi=300)b.save(f"pandas_add.png")b.show()

总结

总体来说在大数据下会有多倍的性能提升。但我们也容易观察到,就算10e8量级的数据,进行一次运算的时间也不超过1秒。一般计算次数多,数据量大,对速度有要求的场景下可以使用。

相关文章:

【附代码】NumPy加速库NumExpr(大数据)

文章目录 相关文献测试电脑配置数组加减乘除数组乘方Pandas加减乘除总结 作者:小猪快跑 基础数学&计算数学,从事优化领域5年,主要研究方向:MIP求解器、整数规划、随机规划、智能优化算法 如有错误,欢迎指正。如有…...

4、安全开发-Python-蓝队项目流量攻击分析文件动态监控图片隐写技术

用途:个人学习笔记,有所借鉴,欢迎指正! 总结: (1)使用python脚本Scapy库实现指定网卡的流量抓包分析 (2)使用python脚本Watchdog实现指定目录文件行为监控 (…...

MySQL 日志管理

4.6)日志管理 MySQL 支持丰富的日志类型,如下: 事务日志:transaction log 事务日志的写入类型为 "追加",因此其操作为 "顺序IO"; 通常也被称为:预写式日志 write ahead…...

Python CSV文件读取和写入

本文主要为Python 实现CSV文件读取和写入操作。 CSV文件写入和读取 因为没有现成的csv文件,所以csv的顺序为先写入后读取。 写入 创建csv文件并把数据写入,有两种实现方式:直接插入所有行和插入单行。 示例如下: import csv i…...

如何使用C#调用LabVIEW算法

新建一个工程 这是必须的; 创建项目 项目 点击完成; 将项目另存为;方便后续的使用; 创建 一个测试VI 功能很简单,用的一个加法;将加数A,B设置为输入,和C设置为输出,…...

调用百度文心AI作画API实现中文-图像跨模态生成

作者介绍 乔冠华,女,西安工程大学电子信息学院,2020级硕士研究生,张宏伟人工智能课题组。 研究方向:机器视觉与人工智能。 电子邮件:1078914066qq.com 一.文心AI作画API介绍 1. 文心AI作画 文…...

JAVA SpringBoot中使用redis的事务

目录 一、Java语言介绍 二、SpringBoot框架介绍 三、Redis缓存介绍 四、什么是redis的事务 一、Java语言介绍 Java是一种广泛使用的高级编程语言,由Sun Microsystems公司于1995年推出。它的设计目标是要求“一次编写,到处运行”(Write Once, Run Anywhere, WOR…...

docker部署自己的网站wordpress

目录 安装 1.创建目录 2.创建并启动mysql 3.创建并启动wordpress 使用 1.设置语言 2.设置基础信息 3.首页 安装 1.创建目录 mkdir -p /opt/wordpress/{db,data} 2.创建并启动mysql docker run -d --name my_mysql --restart always -e MYSQL_ROOT_PASSWORD123456 -e …...

基于ISO13400 (DoIP) 实现车辆刷写

近年来,在整车研发中基于以太网实现车辆高带宽通讯无疑是人们热议的话题。无论是车内基于车载以太网来减少线束成本,实现ADAS、信息娱乐系统等技术,还是基于新的电子电气架构以及远程诊断需求来实现以太网诊断(DoIP)&a…...

Chrome 沙箱逃逸 -- Plaid CTF 2020 mojo

文章目录 前置知识参考文章环境搭建题目环境调试环境 题目分析附件分析漏洞分析OOBUAF 漏洞利用总结 前置知识 Mojo & Services 简介 chromium mojo 快速入门 Mojo docs Intro to Mojo & Services 译文:利用Mojo IPC的UAF漏洞实现Chrome浏览器沙箱逃逸原文…...

汇编笔记 01

小蒟蒻的汇编自学笔记,如有错误,望不吝赐教 文章目录 笔记编辑器,启动!debug功能CS & IPmovaddsub汇编语言寄存器的英文全称中英对照表muldivandor 笔记 编辑器,启动! 进入 debug 模式 debug功能 …...

C语言:矩阵中的最小元素

题目描述 给定一个5X5的整数矩阵,找出其中最小的元素,输出所在的行号、列号和元素值,其中行号和列号都从0开始。 例如,有矩阵: 5 86 53 50 18 25 67 79 44 68 79 63 24 84 100 42 30 59 47 37 28 10 32 23 81 其中最小…...

【原创】MQTT开发笔记(四)- 压力测试

一、前言 Jmeter 是 apache 公司基于 java 开发的一款开源压力测试工具,体积小,功能全,使用方便,是一个比较轻量级的测试工具,使用起来非常简 单。因为 jmeter 是 java 开发的,所以运行的时候必须先要安装 …...

vue 引入 百度地图API 和 路书

公司项目中&#xff0c;偶尔都会涉及到地图的使用&#xff0c;这里以百度地图为例&#xff0c;我们梳理一下引用流程及注意点 账号和获取密钥 百度地图示例 百度地图 类参考 1、账号和获取密钥 // api.map.baidu.com/api?typewebgl&v3.0&ak您的密钥<script type…...

【QT+QGIS跨平台编译】之二十六:【SpatialIndex+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、SpatialIndex介绍二、文件下载三、文件分析四、pro文件五、编译实践一、SpatialIndex介绍 SpatialIndex是一个用于高效处理空间数据的C++库,基于R树索引结构实现。它提供了一系列的空间操作和查询算法,能够快速地对大规模空间数据进行检索和分析。 SpatialInd…...

SQL在云计算中的新角色:重新定义数据分析

文章目录 1. 云计算与数据分析的融合2. SQL在云计算中的新角色3. 分布式SQL查询引擎4. SQL-on-Hadoop解决方案5. SQL与其他数据分析工具的集成6. 实时数据分析与SQL7. SQL在云数据仓库中的角色8. 安全性与隐私保护9. SQL的未来展望《SQL数据分析实战&#xff08;第2版&#xff…...

云安全的基本概念(基本目标与指导方针)

目录 一、云安全概念概述 1.1 概述 二、云安全的基本目标 2.1 安全策略开发模型 2.1.1 信息安全三元组 2.1.1.1 保密性(Confidentiality) 2.1.1.2 完整性(Integrity) 2.1.1.3 可用性(Availability) 2.1.2 信息安全三元组的局限性 2.2 其他信息安全属性 2.2.1 真实性 …...

猫头虎分享已解决Bug || docker: Error response from daemon: network not found

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

《幻兽帕鲁》攻略:0基础入门及游戏基础操作 幻兽帕鲁基础设施 幻兽帕鲁基础攻击力 Mac苹果电脑玩幻兽帕鲁 幻兽帕鲁加班加点

今天就跟大家聊聊《幻兽帕鲁》攻略&#xff1a;0基础入门及游戏基础操作。 如果想在苹果电脑玩《幻兽帕鲁》记得安装CrossOver哦。 以下纯干货&#xff1a; CrossOver正版安装包&#xff08;免费试用&#xff09;&#xff1a;https://souurl.cn/Y1gDao 一、基础操作 二、界面…...

JDK版本如何在IDEA中切换

JDK版本在IDEA中切换 一、项目结构设置 1.Platform——Settings 项目结构---SDKS 2.Project——SDK 3.Modules——SDK——Sources 4.Modules——SDK——Dependencies 二、设置--编译--字节码版本 Settings——Build,——Java Compiler...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...