当前位置: 首页 > news >正文

常用排序算法(Java版本)

1 引言

常见的排序算法有八种:交换排序【冒泡排序、快速排序】、插入排序【直接插入排序、希尔排序】、选择排序【简单选择排序、堆排序】、归并排序、基数排序。

2 交换排序

所谓交换,就是序列中任意两个元素进行比较,根据比较结果来交换各自在序列中的位置,以此达到排序的目的。

2.1 冒泡排序

冒泡排序是一种简单的交换排序算法,以升序排序为例,其核心思想是:

  1. 从第一个元素开始,比较相邻的两个元素。如果第一个比第二个大,则进行交换。
  2. 轮到下一组相邻元素,执行同样的比较操作,再找下一组,直到没有相邻元素可比较为止,此时最后的元素应是最大的数。
  3. 除了每次排序得到的最后一个元素,对剩余元素重复以上步骤,直到没有任何一对元素需要比较为止。
	public void bubbleSortOpt(int[] nums) {if (nums == null) {return;}int temp;for (int i = 0; i < nums.length; i++) {for (int j = 0; j < nums.length - 1 - i; j++) {if (nums[j] > nums[j + 1]) {temp = nums[j];nums[j] = nums[j + 1];nums[j + 1] = temp;}}}}

2.2 快速排序

快速排序的思想很简单,就是先把待排序的数组拆成左右两个区间,左边都比中间的基准数小,右边都比基准数大。接着左右两边各自再做同样的操作,完成后再拆分再继续,一直到各区间只有一个数为止。

举个例子,现在我要排序 4、9、5、1、2、6 这个数组。一般取首位的 4 为基准数,第一次排序的结果是:

2、1、4、5、9、6

可能有人觉得奇怪,2 和 1 交换下位置也能满足条件,为什么 2 在首位?这其实由实际的代码实现来决定,并不影响之后的操作。以 4 为分界点,对 2、1、4 和 5、9、6 各自排序,得到:

1、2、4、5、9、6

不用管左边的 1、2、4 了,将 5、9、6 拆成 5 和 9、6,再排序,至此结果为:

1、2、4、5、6、9

为什么把快排划到交换排序的范畴呢?因为元素的移动也是靠交换位置来实现的。算法的实现需要用到递归(拆分区间之后再对每个区间作同样的操作)

    public void quicksort(int[] arr, int start, int end) {if (start < end) {int stard = arr[start];int low = start;int high = end;while (low < high) {while (low < high && stard <= arr[high]) {high--;}arr[low] = arr[high];while (low < high && stard >= arr[low]) {low++;}arr[high] = arr[low];}arr[low] = stard;quicksort(arr, start, low);quicksort(arr, low + 1, end);}}

3 插入排序

插入排序是一种简单的排序方法,其基本思想是将一个记录插入到已经排好序的有序表中,使得被插入数的序列同样是有序的。按照此法对所有元素进行插入,直到整个序列排为有序的过程。

3.1 直接插入排序

直接插入排序就是插入排序的粗暴实现。对于一个序列,选定一个下标,认为在这个下标之前的元素都是有序的。将下标所在的元素插入到其之前的序列中。接着再选取这个下标的后一个元素,继续重复操作。直到最后一个元素完成插入为止。我们一般从序列的第二个元素开始操作。
在这里插入图片描述

    public void insertSort(int[] nums) {// 遍历所有数字for (int i = 1; i < nums.length; i++) {if (nums[i] < nums[i - 1]) {// 把当前遍历的数字保存一下int temp = nums[i];int j;// 前一个数字按序移动到后一个数字上for (j = i - 1; j >= 0 && nums[j] >= temp; j--) {nums[j + 1] = nums[j];}nums[j + 1] = temp;}}}

3.2 希尔排序

某些情况下直接插入排序的效率极低。比如一个已经有序的升序数组,这时再插入一个比最小值还要小的数,也就意味着被插入的数要和数组所有元素比较一次。我们需要对直接插入排序进行改进。

怎么改进呢?前面提过,插入排序对已经排好序的数组操作时,效率很高。因此我们可以试着先将数组变为一个相对有序的数组,然后再做插入排序。

希尔排序能实现这个目的。希尔排序把序列按下标的一定增量(步长)分组,对每组分别使用插入排序。随着增量(步长)减少,一直到一,算法结束,整个序列变为有序。因此希尔排序又称缩小增量排序。

一般来说,初次取序列的一半为增量,以后每次减半,直到增量为一。
在这里插入图片描述

    public void shellSort(int[] nums) {for (int gap = nums.length / 2; gap > 0; gap /= 2) {for (int i = 0; i < gap; i++) {for (int j = i + gap; j < nums.length; j += gap) {if (nums[j] < nums[j - gap]) {int k;int temp = nums[j];for (k = j - gap; k >= 0 && nums[k] > temp; k -= gap) {nums[k + gap] = nums[k];}nums[k + gap] = temp;}}}}}

4 选择排序

选择排序是一种简单直观的排序算法,首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

4.1 简单选择排序

选择排序思想的暴力实现,每一趟从未排序的区间找到一个最小元素,并放到第一位,直到全部区间有序为止。

    public void selectSort(int[] nums) {for (int i = 0; i < nums.length; i++) {int minIndex = i;for (int j = i + 1; j < nums.length; j++) {if (nums[j] < nums[minIndex]) {minIndex = j;}}if (i != minIndex) {int temp = nums[i];nums[i] = nums[minIndex];nums[minIndex] = temp;}}}

4.2 堆排序

我们知道,对于任何一个数组都可以看成一颗完全二叉树。堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
在这里插入图片描述
像上图的大顶堆,映射为数组,就是 [50, 45, 40, 20, 25, 35, 30, 10, 15]。可以发现第一个下标的元素就是最大值,将其与末尾元素交换,则末尾元素就是最大值。所以堆排序的思想可以归纳为以下两步:

根据初始数组构造堆

每次交换第一个和最后一个元素,然后将除最后一个元素以外的其他元素重新调整为大顶堆

重复以上两个步骤,直到没有元素可操作,就完成排序了。

我们需要把一个普通数组转换为大顶堆,调整的起始点是最后一个非叶子结点,然后从左至右,从下至上,继续调整其他非叶子结点,直到根结点为止。

/*** 转化为大顶堆* @param arr 待转化的数组* @param size 待调整的区间长度* @param index 结点下标*/
public void maxHeap(int[] arr, int size, int index) {// 左子结点int leftNode = 2 * index + 1;// 右子结点int rightNode = 2 * index + 2;int max = index;// 和两个子结点分别对比,找出最大的结点if (leftNode < size && arr[leftNode] > arr[max]) {max = leftNode;}if (rightNode < size && arr[rightNode] > arr[max]) {max = rightNode;}// 交换位置if (max != index) {int temp = arr[index];arr[index] = arr[max];arr[max] = temp;// 因为交换位置后有可能使子树不满足大顶堆条件,所以要对子树进行调整maxHeap(arr, size, max);}
}/*** 堆排序* @param arr 待排序的整型数组*/
public static void heapSort(int[] arr) {// 开始位置是最后一个非叶子结点,即最后一个结点的父结点int start = (arr.length - 1) / 2;// 调整为大顶堆for (int i = start; i >= 0; i--) {SortTools.maxHeap(arr, arr.length, i);}// 先把数组中第 0 个位置的数和堆中最后一个数交换位置,再把前面的处理为大顶堆for (int i = arr.length - 1; i > 0; i--) {int temp = arr[0];arr[0] = arr[i];arr[i] = temp;maxHeap(arr, i, 0);}
}

5 归并排序

归并排序是建立在归并操作上的一种有效,稳定的排序算法。该算法采用分治法的思想,是一个非常典型的应用。归并排序的思路如下:

  1. 将 n 个元素分成两个各含 n/2 个元素的子序列
  2. 借助递归,两个子序列分别继续进行第一步操作,直到不可再分为止
  3. 此时每一层递归都有两个子序列,再将其合并,作为一个有序的子序列返回上一层,再继续合并,全部完成之后得到的就是一个有序的序列

关键在于两个子序列应该如何合并。假设两个子序列各自都是有序的,那么合并步骤就是:

  1. 创建一个用于存放结果的临时数组,其长度是两个子序列合并后的长度
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入临时数组,并移动指针到下一位置
  4. 重复步骤 3 直到某一指针达到序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾
/*** 合并数组*/
public static void merge(int[] arr, int low, int middle, int high) {// 用于存储归并后的临时数组int[] temp = new int[high - low + 1];// 记录第一个数组中需要遍历的下标int i = low;// 记录第二个数组中需要遍历的下标int j = middle + 1;// 记录在临时数组中存放的下标int index = 0;// 遍历两个数组,取出小的数字,放入临时数组中while (i <= middle && j <= high) {// 第一个数组的数据更小if (arr[i] <= arr[j]) {// 把更小的数据放入临时数组中temp[index] = arr[i];// 下标向后移动一位i++;} else {temp[index] = arr[j];j++;}index++;}// 处理剩余未比较的数据while (i <= middle) {temp[index] = arr[i];i++;index++;}while (j <= high) {temp[index] = arr[j];j++;index++;}// 把临时数组中的数据重新放入原数组for (int k = 0; k < temp.length; k++) {arr[k + low] = temp[k];}
}/*** 归并排序*/
public static void mergeSort(int[] arr, int low, int high) {int middle = (high + low) / 2;if (low < high) {// 处理左边数组mergeSort(arr, low, middle);// 处理右边数组mergeSort(arr, middle + 1, high);// 归并merge(arr, low, middle, high);}
}

6 基数排序

基数排序的原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。为此需要将所有待比较的数值统一为同样的数位长度,数位不足的数在高位补零。

/*** 基数排序*/
public static void radixSort(int[] arr) {// 存放数组中的最大数字int max = Integer.MIN_VALUE;for (int value : arr) {if (value > max) {max = value;}}// 计算最大数字是几位数int maxLength = (max + "").length();// 用于临时存储数据int[][] temp = new int[10][arr.length];// 用于记录在 temp 中相应的下标存放数字的数量int[] counts = new int[10];// 根据最大长度的数决定比较次数for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {// 每一个数字分别计算余数for (int j = 0; j < arr.length; j++) {// 计算余数int remainder = arr[j] / n % 10;// 把当前遍历的数据放到指定的数组中temp[remainder][counts[remainder]] = arr[j];// 记录数量counts[remainder]++;}// 记录取的元素需要放的位置int index = 0;// 把数字取出来for (int k = 0; k < counts.length; k++) {// 记录数量的数组中当前余数记录的数量不为 0if (counts[k] != 0) {// 循环取出元素for (int l = 0; l < counts[k]; l++) {arr[index] = temp[k][l];// 记录下一个位置index++;}// 把数量置空counts[k] = 0;}}}
}

7 算法性能

序号排序算法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性
1冒泡排序O(n^2)O(n^2)O(n)O(1)稳定
2快速排序O(n log n)O(n^2)O(n log n)O(n log n)不稳定
3直接插入排序O(n^2)O(n^2)O(n)O(1)稳定
4希尔排序O(n log n)O(n^2)O(n)O(1)不稳定
5简单选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
6堆排序O(n log n)O(n log n)O(n log n)O(n log n)不稳定
7归并排序O(n log n)O(n log n)O(n log n)O(n)稳定
8基数排序O(n*k)O(n*k)O(n*k)O(n+k)稳定

返回面试宝典

相关文章:

常用排序算法(Java版本)

1 引言 常见的排序算法有八种&#xff1a;交换排序【冒泡排序、快速排序】、插入排序【直接插入排序、希尔排序】、选择排序【简单选择排序、堆排序】、归并排序、基数排序。 2 交换排序 所谓交换&#xff0c;就是序列中任意两个元素进行比较&#xff0c;根据比较结果来交换…...

CPP项目:Boost搜索引擎

1.项目背景 对于Boost库来说&#xff0c;它是没有搜索功能的&#xff0c;所以我们可以实现一个Boost搜索引擎来实现一个简单的搜索功能&#xff0c;可以更快速的实现Boost库的查找&#xff0c;在这里&#xff0c;我们实现的是站内搜索&#xff0c;而不是全网搜索。 2.对于搜索…...

【洛谷 P1616】疯狂的采药 题解(动态规划+完全背包)

疯狂的采药 题目背景 此题为纪念 LiYuxiang 而生。 题目描述 LiYuxiang 是个天资聪颖的孩子&#xff0c;他的梦想是成为世界上最伟大的医师。为此&#xff0c;他想拜附近最有威望的医师为师。医师为了判断他的资质&#xff0c;给他出了一个难题。医师把他带到一个到处都是草…...

L1-027 出租分数 20

下面是新浪微博上曾经很火的一张图&#xff1a; 一时间网上一片求救声&#xff0c;急问这个怎么破。其实这段代码很简单&#xff0c;index数组就是arr数组的下标&#xff0c;index[0]2 对应 arr[2]1&#xff0c;index[1]0 对应 arr[0]8&#xff0c;index[2]3 对应 arr[3]0&…...

51单片机精进之路-1点亮led灯

本例中led灯使用共阳极连接在电路中&#xff0c;共阳极即将led的正极接在一起&#xff0c;通过上拉电阻接到电源正极&#xff0c;通过单片机io与Led的负极相连&#xff0c;io输出低电平&#xff0c;有电流从led流过&#xff0c;此时led点亮&#xff0c;当io输出高电平时&#x…...

嵌入式学习Day14 C语言 --- 位运算

位运算 注意&#xff1a;符号位也遵循这个规则 一、按位与(&) 运算规则&#xff1a;一假则假 int a 0x33;a & 0x55;0011 00110101 0101 &----------0001 0001 //0x11 二、按位或(|) 运算规则&#xff1a;一真则真 int a 0x33;a |0x55;0011 00110101 0101 |…...

idea设置terminal为git

要在IntelliJ IDEA中设置终端为Git Bash&#xff0c;请按照以下步骤操作&#xff1a; 打开 Settings&#xff08;设置&#xff09;。点击 Tools&#xff08;工具&#xff09;选项卡。进入 Terminal&#xff08;终端&#xff09;界面。在 Shell Path 下选择 Browse&#xff08;…...

《MySQL 简易速速上手小册》第3章:性能优化策略(2024 最新版)

文章目录 3.1 查询优化技巧3.1.1 基础知识3.1.2 重点案例3.1.3 拓展案例 3.2 索引和查询性能3.2.1 基础知识3.2.2 重点案例3.2.3 拓展案例 3.3 优化数据库结构和存储引擎3.3.1 基础知识3.3.2 重点案例3.3.3 拓展案例 3.1 查询优化技巧 让我们来聊聊如何让你的 MySQL 查询跑得像…...

【golang】23、gorilla websocket 源码:examples、数据结构、流程

文章目录 一、examples1.1 echo1.1.1 server.go1.1.2 client.go 1.2 command1.2.1 功能和启动方式1.2.2 home.html1.2.3 main.go 1.3 filewatch1.3.1 html1.3.2 serveHome 渲染模板1.3.3 serveWs1.3.4 writer() 1.4 buffer pool1.4.1 server1.4.2 client 1.5 chat1.5.1 server1…...

SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式 基础(持续更新~)

具体操作&#xff1a; day2: 作用&#xff1a; 出现跨域问题 配相对应进行配置即可解决&#xff1a; IDEA连接的&#xff0c;在url最后加参数?useSSLfalse注意链接密码是123&#xff08;docker中mysql密码&#xff09; 注意&#xff0c;虚拟机中设置的密码和ip要和主机上…...

flask+pyinstaller实现mock接口,并打包到exe运行使用postman验证

flask代码 from flask import Flask, request, jsonifyapp Flask(__name__)app.route("/login", methods[POST]) def login():username request.json.get("username").strip() # 用户名password request.json.get("password").strip() # 密…...

【Spring Boot】第一篇 创建简单的Spring Boot项目

导航 一. 简介二. 创建简单的Spring Boot项目1. 工具选择和版本确定2. 创建步骤 三. 部署项目四. 测试验证 一. 简介 Spring Boot是一个用于构建独立的、生产级别的Spring应用程序的框架。它简化了Spring应用程序的创建和配置过程&#xff0c;同时提供了很多开箱即用的功能&am…...

SSL协议是什么?关于SSL和TLS的常见问题解答

SSL&#xff08;安全套接字层&#xff09;及其后继者TLS&#xff08;传输层安全&#xff09;是用于在联网计算机之间建立经过身份验证和加密的链接的协议。尽管SSL协议在 1999年已经随着TLS 1.0的发布而被弃用&#xff0c;但我们仍将这些相关技术称为“SSL”或“SSL/TLS”。那么…...

第十五个知识:JQuery

初识JQuery: <head><meta charset"UTF-8"><title>Title</title><script src"lib/jquery-3.7.1.js"></script>//引入jquery </head> <body><a href"https://www.baidu.com" id"baidu&q…...

用Matlab 2015a svmtrain函数训练的SVM model在2021b无法使用的解决方法

背景 与r2015a版本的Matlab相比&#xff0c;r2021b版本中包含更多集成好的算法模块&#xff08;尤其是深度学习的模块&#xff09;&#xff0c;想把原来r2015a版本的代码升级到r2021b高版本的Matlab已经采用fitcsvm函数和predict函数替代了旧版本中svmtrain函数和svmclassify函…...

umount:/home/tuners/windows files:目标忙。

您提到的错误信息 "umount: /home/tuners/windows files: 目标忙。" 是在尝试卸载&#xff08;umount&#xff09;一个文件系统时常见的错误。这个错误表明有一些进程仍然在使用挂载点&#xff08;/home/tuners/windows files&#xff09;下的文件或目录&#xff0c;…...

FPGA_vga显示

一 VGA 1.1 VGA VGA是视频图像阵列&#xff0c;是一种使用模拟信号进行视频传输的标准协议。 1.2 VGA接引脚定义 VGA分公母两种&#xff0c;RGB显示标准。 1.3 VGA显示器 VGA显示器采用图像扫描的方式进行图像显示&#xff0c;将构成图像的像素点&#xff0c;在行同步信号…...

sklearn模型指标和特征贡献度查看

文章目录 算法介绍r2_scoretrain_test_splitDecisionTreeRegressor参考文献支持快速查看traget和特征之间的关系 # -*- coding: utf-8 -*- import pandas as pd pd.set_option(display.max_columns, None) pd.set_option...

2024.2.6日总结(小程序开发3)

页面配置 页面配置和全局配置的关系&#xff1a; 小程序中&#xff0c;app.json中的window节点&#xff0c;可以全局配置小程序中每个页面的窗口表现 如果某些小程序想要有特殊的窗口表现&#xff0c;可以用页面级别的.json配置文件实现这个需求 页面配置和全局配置冲突时&…...

相机图像质量研究(10)常见问题总结:光学结构对成像的影响--光圈

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...