opencv C++ dnn模块调用yolov5以及Intel RealSense D435深度相机联合使用进行目标检测
一、代码
#include <opencv2/opencv.hpp>
#include <opencv2/dnn/dnn.hpp>
#include <librealsense2/rs.hpp> // Include RealSense Cross Platform APIusing namespace cv;
using namespace dnn;
using namespace std;
using namespace rs2;// 类名数组,这里需要替换为实际YOLO模型所检测的对象的类名
const char* classNames[] = {"object1", "object2", "object3", "object4"};int main(int argc, char** argv)
{// 模型权重和配置文件路径,这些文件包含了训练好的YOLO模型参数和网络配置String model = "yolov8.onnx"; // 替换为实际模型文件路径// 加载预训练的模型和配置到DNN网络中Net net = readNetFromONNX(model);// 设置推理引擎后端为OpenCV,目标设备为CPUnet.setPreferableBackend(DNN_BACKEND_OPENCV);net.setPreferableTarget(DNN_TARGET_CPU);// Declare depth colorizer for pretty visualization of depth datacolorizer color_map;// Declare RealSense pipeline, encapsulating the actual device and sensorspipeline p;// Start streaming with default recommended configurationp.start();// 循环直到用户按下键盘上的任意键while (waitKey(1) < 0) {// Wait for the next set of frames from the cameraframeset frames = p.wait_for_frames();// Get a frame from the RGB cameraframe color = frames.get_color_frame();// Create OpenCV matrix of size (color_height, color_width)Mat frame(Size(640, 480), CV_8UC3, (void*)color.get_data(), Mat::AUTO_STEP);Mat blob; // 用于存储处理后的图像,以适应网络输入// 将帧图像转换为网络输入所需格式blobFromImage(frame, blob, 1/255.0, cv::Size(416, 416), Scalar(0,0,0), true, false);// 将blob设置为网络的输入net.setInput(blob);// 运行前向传递以获取网络的输出层vector<Mat> outs;net.forward(outs, net.getUnconnectedOutLayersNames());// 遍历网络输出的每一层结果for (size_t i = 0; i < outs.size(); ++i) {for (int j = 0; j < outs[i].rows; ++j) {Mat scores = outs[i].row(j).colRange(5, outs[i].cols);Point classIdPoint;double confidence;minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);if (confidence > 0.5) {int centerX = (int)(outs[i].at<float>(j, 0) * frame.cols);int centerY = (int)(outs[i].at<float>(j, 1) * frame.rows);int width = (int)(outs[i].at<float>(j, 2) * frame.cols);int height = (int)(outs[i].at<float>(j, 3) * frame.rows);int left = centerX - width / 2;int top = centerY - height / 2;rectangle(frame, Rect(left, top, width, height), Scalar(0, 255, 0), 2);int classIdx = static_cast<int>(classIdPoint.x);string classLabel = string(classNames[classIdx]);string label = classLabel + ":" + format("%.2f", confidence);int baseLine;Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);top = max(top, labelSize.height);rectangle(frame, Point(left, top - labelSize.height), Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED);putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0));}}}// 展示处理后的帧imshow("YoloV8", frame);}return 0;
}
注意:由于手头上没有该摄像头,本人只是查询资料,以及文档之后写的代码,并没有实操
二、安装包
需要安装opencv、librealsense2库
链接:Intel.RealSense.SDK.zip资源-CSDN文库
相关文章:
opencv C++ dnn模块调用yolov5以及Intel RealSense D435深度相机联合使用进行目标检测
一、代码 #include <opencv2/opencv.hpp> #include <opencv2/dnn/dnn.hpp> #include <librealsense2/rs.hpp> // Include RealSense Cross Platform APIusing namespace cv; using namespace dnn; using namespace std; using namespace rs2;// 类名数组&am…...
2024牛客寒假算法基础集训营1(视频讲解全部题目)
2024牛客寒假算法基础集训营1(题目全解) ABCDEFGHIJKLM 2024牛客寒假算法基础集训营1(视频讲解全部题目) A #include<bits/stdc.h> #define endl \n #define deb(x) cout << #x << " " << …...
第三百一十三回
文章目录 1. 概念介绍2. 实现方法2.1 obscureText属性2.2 decoration属性 3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何实现倒计时功能"相关的内容,本章回中将介绍如何实现密码输入框.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍…...
倒计时61天
M-智乃的36倍数(normal version)_2024牛客寒假算法基础集训营3 (nowcoder.com) //非ac代码,超时了,54.17/100#include<bits/stdc.h> using namespace std; const int N1e55; const int inf0x3f3f3f3f; #define int long long int n; string s1[N]; void solve() {cin>…...
npm后Truffle找不到命令(ubantu20系统)
Truffle找不到命令 方法1方法2 方法1 # 编辑.profile vim ~/.profile # 在.profile末尾把nodejs的解压路径添加到$PATH环境变量中 PATH"$HOME/bin:$HOME/.local/bin:路径:$PATH" source 文件方法2 #ls -l 在nodejs的bin目录下查看truffle链接的脚本文件 truffle -&…...
嵌入式学习第三篇——51单片机
目录 1,嵌入式系统 1,嵌入式系统的定义 2,单片机的定义 2,51单片机 1,开发环境 2,开发板使用的基本思路 1,查看原理图,查看芯片手册 2,获得调用硬件的管…...
RabbitMQ详解
RabbitMQ 1.初识MQ 1.1.同步和异步通讯 微服务间通讯有同步和异步两种方式: 同步通讯:就像打电话,需要实时响应。 异步通讯:就像发邮件,不需要马上回复。 两种方式各有优劣,打电话可以立即得到响应&a…...
CGAL::2D Arrangements-4
4. Free函数 Arrangement_on_surface_2类模板是用曲线切分二维的面。因为它的接口设计是最简化的,这意味着它的成员函数很少执行几何操作。本章将解释怎么利用这些Free function来达到Arrangement操作。执行这些操作通常需要优秀的几何算法,而且有时会对…...
终端命令提示符:如何查看我们电脑端口是否被占用和处理方式
文章目录 端口信息查看1、Windows:2、Linux/macOS: 使用 netstat使用 lsof 端口信息查看 在不同的操作系统中,查看端口是否被占用的指令有所不同。以下是一些常见的指令: 1、Windows: 使用命令行工具 netstat 来查看端口占用情况。 电脑键盘按住 win…...
elasticsearch重置密码操作
安装es的时候需要测试这个url:http://127.0.0.1:9200/ 出现弹窗让我输入账号和密码。我第一次登录,没有设置过账号和密码, 解决方法是:在es的bin目录下打开cmd窗口,敲命令:.\elasticsearch-reset-password…...
从零开始手写mmo游戏从框架到爆炸(零)—— 导航
从今天开始我们尝试从零开始写一个mmo的游戏。主要技术还是netty。参考了网上很多的大神的框架,本来希望基于ioGame或者vert.x等来直接写功能的,觉得从零开始更有意义,而且咱们也不需要太NB的底层功能,够用就行。 下面是导航&…...
机器学习7-K-近邻算法(K-NN)
K-Nearest Neighbors(K-近邻算法,简称KNN)是一种基本的监督学习算法,用于解决分类和回归问题。KNN的核心思想是基于距离度量,在特征空间中找到最近的K个样本,然后使用它们的标签进行决策。以下是KNN的基本概…...
相机图像质量研究(7)常见问题总结:光学结构对成像的影响--镜片固化
系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…...
猫头虎分享已解决Bug || Go Error: cannot convert int to string
博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...
前端bug手册
JavaScript错误:常见的JavaScript错误包括语法错误、未定义的变量、类型错误等。这些错误可能导致页面无法正常运行或功能无法正常使用。样式问题:前端开发中常见的样式问题包括布局错乱、元素位置不正确、样式覆盖等。这些问题可能导致页面显示不正常或…...
Elasticsearch中Document Routing特性
Document Routing在Elasticsearch中是一种高级特性,它允许用户在索引文档时指定一个路由值。通过这种方式,可以确保具有相同路由值的所有文档都存储在同一个分片中。这对于提高查询效率特别有用,因为它允许查询只针对包含相关文档的特定分片&…...
【Git版本控制 03】远程操作
目录 一、克隆远程仓库 二、推送远程仓库 三、拉取远程仓库 四、忽略特殊文件 五、命令配置别名 一、克隆远程仓库 Git是分布式版本控制系统,同⼀个Git仓库,可以分布到不同的机器上。怎么分布呢? 找⼀台电脑充当服务器的⻆⾊ÿ…...
【Git】Windows下通过Docker安装GitLab
私有仓库 前言基本思路拉取镜像创建挂载目录创建容器容器启动成功登录仓库设置中文更改密码人员审核配置邮箱 前言 由于某云存在人数限制,这个其实很好理解,毕竟使用的是云服务器,人家也是要交钱的。把代码完全放在别人的服务器上面…...
flutter 操作mysql
引入模块 dependencies: flutter: sdk: flutter mysql1: ^0.20.0 mysql helper 的代码 import dart:async; import package:mysql1/mysql1.dart; class MySqlHelper { static const _host localhost; static const _port 3333; static const _user user; static c…...
c++阶梯之类与对象(中)< 续集 >
前文: c阶梯之类与对象(上)-CSDN博客 c阶梯之类与对象(中)-CSDN博客 前言: 在上文中,我们学习了类的六个默认成员函数之构造,析构与拷贝构造函数,接下来我们来看看剩下…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
