【leetcode热题100】反转链表 II
给你单链表的头指针 head
和两个整数 left
和 right
,其中 left <= right
。请你反转从位置 left
到位置 right
的链表节点,返回 反转后的链表 。
示例 1:
输入:head = [1,2,3,4,5], left = 2, right = 4 输出:[1,4,3,2,5]
示例 2:
输入:head = [5], left = 1, right = 1 输出:[5]
提示:
- 链表中节点数目为
n
1 <= n <= 500
-500 <= Node.val <= 500
1 <= left <= right <= n
解法一
首先找到 m 的位置,记录两端的节点 left1 和 left2 。
然后每遍历一个节点,就倒置一个节点。
到 n 的位置后,利用之前的 left1 和 left2 完成连接。
为了完成链表的倒置需要两个指针 pre 和 head。为了少考虑边界条件,例如 m = 1 的倒置。加一个哨兵节点 dummy。
m = 2, n = 41 2 3 4 5 加入哨兵节点 d,pre 简写 p,head 简写 h0 1 2 3 4 5 往后遍历
^ ^
d h
p0 1 2 3 4 5 此时 h 指向 m 的位置,记录 p 和 h 为 l1 和 l2
^ ^ ^
d p h0 1 2 3 4 5 然后继续遍历
^ ^ ^
d p hl1 l20 1 2 3 4 5 开始倒置链表,使得 h 指向 p
^ ^ ^ ^
d l1 p hl2
当前状态用图形描述
倒转链表,将 h 的 next 指向 p,并且后移 p 和 h。
然后上边一步会重复多次,直到 h 到达 n 的位置。当然这道题比较特殊,上图 h 已经到达了 n 的位置。
此时,我们需要将 h 指向 p,同时将 l1 指向 h,l2 指向 h.next,使得链表接起来。
操作完成,将 dummy.next 返回即可。
public ListNode reverseBetween(ListNode head, int m, int n) {if (m == n) {return head;}ListNode dummy = new ListNode(0);dummy.next = head;int count = 0;ListNode left1 = null;ListNode left2 = null;ListNode pre = dummy;while (head != null) {count++;//到达 m,保存 l1 和 l2if (count == m) {left1 = pre;left2 = head;}// m 和 n 之间,倒转链表if (count > m && count < n) {ListNode temp = head.next;head.next = pre;pre = head;head = temp;continue;}//到达 nif (count == n) {left2.next = head.next;head.next = pre;left1.next = head;break;}//两个指针后移head = head.next;pre = pre.next;}return dummy.next;
}
时间复杂度:O(n)。
空间复杂度:O(1)。
相关文章:

【leetcode热题100】反转链表 II
给你单链表的头指针 head 和两个整数 left 和 right ,其中 left < right 。请你反转从位置 left 到位置 right 的链表节点,返回 反转后的链表 。 示例 1: 输入:head [1,2,3,4,5], left 2, right 4 输出:[1,4,3,2…...

谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2
谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比,ALOHA 2 具有更强的性能、人体工程学设计和稳健性,且成本还不到 20 万元人民币。并且,为了加速大规模双手操作的研究,ALOHA 2 相关的所有硬件设计全部开…...

金融行业专题|证券超融合架构转型与场景探索合集(2023版)
更新内容 更新 SmartX 超融合在证券行业的覆盖范围、部署规模与应用场景。新增操作系统信创转型、Nutanix 国产化替代、网络与安全等场景实践。更多超融合金融核心生产业务场景实践,欢迎阅读文末电子书。 在金融行业如火如荼的数字化转型大潮中,传统架…...

【C语言】C的整理记录
前言 该笔记是建立在已经系统学习过C语言的基础上,笔者对C语言的知识和注意事项进行整理记录,便于后期查阅,反复琢磨。C语言是一种面向过程的编程语言。 原想在此阐述一下C语言的作用,然而发觉这些是编程语言所共通的作用&#…...

C/C++模板初阶
目录 1. 泛型编程 2. 函数模板 2.1 函数模板概念 2.1 函数模板格式 2.3 函数模板的原理 2.4 函数模板的实例化 2.5 模板参数的匹配原则 3. 类模板 3.1 类模板的定义格式 3.2 类模板的实例化 1. 泛型编程 如何实现一个通用的交换函数呢? void Swap(int&…...

linux系统下vscode portable版本的c++/Cmake环境搭建001
linux系统下vscode portable版本的Cmake环境搭建 vscode portable 安装安装基本工具安装 build-essential安装 CMake final script code安装插件CMake Tools & cmakeC/C Extension Pack Testsettings,jsonCMakeLists.txt调试和运行工具 CG 目的:希望在获得一个新…...

【QT+QGIS跨平台编译】之三十一:【FreeXL+Qt跨平台编译】(一套代码、一套框架,跨平台编译)
文章目录 一、FreeXL介绍二、文件下载三、文件分析四、pro文件五、编译实践一、FreeXL介绍 【FreeXL跨平台编译】:Windows环境下编译成果(支撑QGIS跨平台编译,以及二次研发) 【FreeXL跨平台编译】:Linux环境下编译成果(支撑QGIS跨平台编译,以及二次研发) 【FreeXL跨平台…...

2024年 前端JavaScript入门到精通 第一天
主要讲解JavaScript核心知识,包含最新ES6语法,从基础到API再到高级。让你一边学习一边练习,重点知识及时实践,同时每天安排大量作业,加深记忆,巩固学习成果。 1.1 基本软件与准备工作 1.2 JavaScript 案例 …...

155基于matlab 的形态学权重自适应图像去噪
基于matlab 的形态学权重自适应图像去噪;通过串并联的滤波降噪对比图,说明并联降噪的优越性。输出降噪前后图像和不同方法的降噪情况的信噪比。程序已调通,可直接运行。 155matlab 自适应图像降噪 串并联降噪 (xiaohongshu.com)...

操作系统——内存管理(附带Leetcode算法题LRU)
目录 1.内存管理主要用来干什么? 2.什么是内存碎片? 3.虚拟内存 3.1传统存储管理方式的缺点? 3.2局部性原理 3.3什么是虚拟内存?有什么用? 3.3.1段式分配 3.3.2页式分配 3.3.2.1换页机制 3.3.2.2页面置换算法…...
I/O多路复用简记
IO多路复用(服务器如何处理多个socket的同时数据传输):1、select。2、poll。3、epoll。 select使用bitmap存socket文件描述符,由bitmap槽位的每一位为0或1决定对应序的socket连接是否有数据到来。由单线程(多线程处理每…...
SPECCPU2017操作说明
1、依赖包下载 yum install gcc* gfortran* 2、将软件包放至被测机器 3、增加权限 chmod X install.sh 4、运行安装 ./install.sh 5、运行 引入编译时所需的环境变量和相关库文件 source shrc 进入/spec2017,执行 ./runcpu -c ../config/Example-gcc-linux-ar…...

openresty (nginx)快速开始
文章目录 一、什么是openresty?二、openresty编译安装1. 编译安装命令1.1 编译完成后路径1.2 常用编译选项解释 2. nginx配置文件配置2.1 nginx.conf模板 3. nginx常见配置一个站点配置多个域名nginx配置中location匹配规则 三、OpenResty工作原理OpenResty工作原理…...

相机图像质量研究(11)常见问题总结:光学结构对成像的影响--像差
系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…...

【深度学习】基于多层感知机的手写数字识别
案例2:构建自己的多层感知机: MNIST手写数字识别 相关知识点: numpy科学计算包,如向量化操作,广播机制等 1 任务目标 1.1 数据集简介 MNIST手写数字识别数据集是图像分类领域最常用的数据集之一,它包含60,000张训练图片&am…...
给定n,m(200),构造一个n*m的矩阵a,使得每个4*4的子矩阵,左上角2*2的子矩阵的异或和等于右下角的,左下角的异或和等于右上角的
题目 #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e18 5, maxm 4e4 5, mod 998244353…...

【开源】基于JAVA+Vue+SpringBoot的假日旅社管理系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统介绍2.2 QA 问答 三、系统展示四、核心代码4.1 查询民宿4.2 新增民宿评论4.3 查询民宿新闻4.4 新建民宿预订单4.5 查询我的民宿预订单 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的假日旅社…...

kafka 文件存储机制
文章目录 1. 思考四个问题:1.1 topic中partition存储分布:1.2 partiton中文件存储方式:1.3 partiton中segment文件存储结构:1.4 在partition中如何通过offset查找message: 2. kafka日志存储参数配置 Topic是逻辑上的概念ÿ…...
引入BertTokenizer出现OSError: Can‘t load tokenizer for ‘bert-base-uncased‘.
今天在跑一个模型的时候出现该报错,完整报错为: OSError: Cant load tokenizer for bert-base-uncased. If you were trying to load it from https://huggingface.co/models, make sure you dont have a local directory with the same name. Otherwis…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...

【AI News | 20250609】每日AI进展
AI Repos 1、OpenHands-Versa OpenHands-Versa 是一个通用型 AI 智能体,通过结合代码编辑与执行、网络搜索、多模态网络浏览和文件访问等通用工具,在软件工程、网络导航和工作流自动化等多个领域展现出卓越性能。它在 SWE-Bench Multimodal、GAIA 和 Th…...
Flask和Django,你怎么选?
Flask 和 Django 是 Python 两大最流行的 Web 框架,但它们的设计哲学、目标和适用场景有显著区别。以下是详细的对比: 核心区别:哲学与定位 Django: 定位: "全栈式" Web 框架。奉行"开箱即用"的理念。 哲学: "包含…...