当前位置: 首页 > news >正文

搜索专项---最短路模型


文章目录

  • 迷宫问题
  • 武士风度的牛
  • 抓住那头牛

一、迷宫问题OJ链接

        本题思路:只需要记录各个点是有哪个点走过来的,就能递推得出路径。记录前驱假设从 1,1 这个点向下走到了2, 1,则将2,1这个点的前驱记为1,1。这样,将整张地图 bfs 后,各个点的前驱就被记录了下来。输出路径:经过 bfs ,各个点的前驱已经被记录下来,我们只需要从终点开始,依次找当前节点的前驱,就能一直找到起点,从而得到一条路径。当然,这条路径是终点到起点的路径,倒序输出即为起点到终点的路径。如果 bfs 是从终点开始,则讲过上述步骤,得到的就是从起点到终点的路径,不用倒序输出。

#include <bits/stdc++.h>#define x first
#define y secondtypedef std::pair<int,int> PII;constexpr int N=1010;int n;
int g[N][N];
bool st[N][N];
PII pre[N][N];//储存当前位置的前驱位置
std::queue<PII> q;int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};void bfs(int ax,int ay)
{q.push({ax,ay});st[ax][ay]=true;while(!q.empty()){PII t=q.front();q.pop();for(int i=0;i<4;i++){int a=t.x+dx[i],b=t.y+dy[i];if(a<0||a>=n||b<0||b>=n) continue;if(g[a][b]) continue;if(!st[a][b]){q.push({a,b});pre[a][b]=t;st[a][b]=true;}}}}int main()
{std::ios::sync_with_stdio(false);std::cin.tie(nullptr);std::cout.tie(nullptr);std::cin>>n;for(int i=0;i<n;i++)for(int j=0;j<n;j++)std::cin>>g[i][j];bfs(n-1,n-1);//从终点位置进行遍历PII end(0,0);while (true){std::cout<<end.x<<" "<<end.y<<std::endl;if (end.x == n - 1 && end.y == n - 1) break;end = pre[end.x][end.y];}
}

二、武士风度的牛OJ链接

   本题题解: 从牛的起点,进行 bfs 即可。根据题意,牛走的是日字, 八个点。因此,dx, dy 和之前的四个点是不同的。可以得出:dx = [-2, -1, 1, 2, 2, 1, -1, -2],dy = [1, 2, 2, 1, -1, -2, -2, -1]
具体的:找到牛的起点,从起点开始进行 bfs向八个方向进行探索,判断这八个点是否合法:不越界和牛能走。对于合法的点,记录从起点走过来的距离,也就是上个点的距离+1。将合法的点放入队列。如果在 bfs过程中遇到了终点(干草) ,则返回答案。

#include <bits/stdc++.h>#define x first
#define y secondtypedef std::pair<int,int> PII;constexpr int N=2000;int n,m;
char g[N][N];
int dist[N][N];
std::queue<PII> q;int dx[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
int dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};int bfs(int ax,int ay)
{memset(dist,-1,sizeof dist);dist[ax][ay]=0;q.push({ax,ay});while(!q.empty()){PII t=q.front();q.pop();for(int i=0;i<8;i++){int a=t.x+dx[i],b=t.y+dy[i];if(a<0||a>=n||b<0||b>=m) continue;if(g[a][b]=='*') continue;if(dist[a][b]!=-1) continue;if(g[a][b]=='H') return dist[t.x][t.y]+1;dist[a][b]=dist[t.x][t.y]+1;q.push({a,b});}}}int main()
{std::ios::sync_with_stdio(false);std::cin.tie(nullptr);std::cout.tie(nullptr);std::cin>>m>>n;for(int i=0;i<n;i++) std::cin>>g[i];int ax,ay;for(int i=0;i<n;i++)for(int j=0;j<m;j++)if(g[i][j]=='K'){ax=i;ay=j;}std::cout<<bfs(ax,ay)<<std::endl;return 0;
}

三、抓住那头牛OJ链接

       本题思路: 这道题是一个一维的找最短路径的问题,无论+1,-1,* 2 花费都是1分钟,即权值相同, 所以才能用BFS去找最短路。假设当前点为t , 目标点为k出队扩展循环判断 1、如果t-1小于0了,那就不能走-1的方法 2、如果t+1 大于了N(10的5次方+10 ),就不能走+1的方法。 3、如果t * 2大于了N,也就不能走* 2的方法了。当然三个判断都应该加上此点是否被走过的条件,如果满足条件,就把其入队,出队时判断t是否等于k,如果相等就return距离。那么为什么N要取的比K大一点呢,因为先减1再乘2扩大会比先乘再减一缩小更快的接近K,1、当k为偶数,假设为100,当前点为51,那么减一再乘更快,2、当k为奇数,假设为99,当前点为50,那么先乘再减一时更快一点的。所以N要取的比K大一点,当超过N的时候就不会有这样的区别,一定是先减再乘可以更快的接近K。

#include <bits/stdc++.h>constexpr int N=1e5+10;int n,k;
int dist[N];
std::queue<int> q;int bfs()
{q.push(n);dist[n]=0;while(!q.empty()){auto t=q.front();q.pop();if(t==k) return dist[k];if(t-1>=0&&dist[t-1]==-1){q.push(t-1);dist[t-1]=dist[t]+1;}if(t+1<=N&&dist[t+1]==-1){q.push(t+1);dist[t+1]=dist[t]+1;}if(t*2<=N&&dist[t*2]==-1){q.push(t*2);dist[t*2]=dist[t]+1;}}
}int main()
{std::ios::sync_with_stdio(false);std::cin.tie(nullptr);std::cout.tie(nullptr);memset(dist,-1,sizeof dist);std::cin>>n>>k;std::cout<<bfs()<<std::endl;return 0;
}

相关文章:

搜索专项---最短路模型

文章目录 迷宫问题武士风度的牛抓住那头牛 一、迷宫问题OJ链接 本题思路:只需要记录各个点是有哪个点走过来的&#xff0c;就能递推得出路径。记录前驱假设从 1,1 这个点向下走到了2, 1&#xff0c;则将2,1这个点的前驱记为1,1。这样&#xff0c;将整张地图 bfs 后&#xff0c…...

安装PostgreSQL和PostGIS

安装环境 Windows 2019 Standard Server 安装PostgreSQL 安装PostgreSQL 16 安装PostGIS 用PostgreSQL 16对应的PostGIS https://download.osgeo.org/postgis/windows/pg16/ https://download.osgeo.org/postgis/windows/pg16/postgis-bundle-pg16x64-setup-3.4.1-1.exe 创建…...

MySQL-----DCL基础操作

▶ DCL简介 DCL英文全称是Data ControlLanguage(数据控制语言)&#xff0c;用来管理数据库用户、控制数据库的访问权限。 DCL--管理用户 ▶ 查询用户 use mysql; select * from user; ▶ 创建用户 ▶ 语法 create user 用户名主机名 identified by 密码 设置为在任意主机上访问…...

Unity报错Currently selected scripting backend (IL2CPP) is not installed

目录 什么是il2cpp il2cpp换mono Unity打包报错Currently selected scripting backend (IL2CPP) is not installed 什么是il2cpp Unity 编辑器模式下是采用.net 虚拟机解释执行.net 代码,发布的时候有两种模式,一种是mono虚拟机模式,一种是il2cpp模式。由于iOS AppStore…...

LeetCode79. Word Search——回溯

文章目录 一、题目二、题解 一、题目 Given an m x n grid of characters board and a string word, return true if word exists in the grid. The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertic…...

Linux命令-blkid命令(查看块设备的文件系统类型、LABEL、UUID等信息)

说明 在Linux下可以使用 blkid命令 对查询设备上所采用文件系统类型进行查询。blkid主要用来对系统的块设备&#xff08;包括交换分区&#xff09;所使用的文件系统类型、LABEL、UUID等信息进行查询。要使用这个命令必须安装e2fsprogs软件包。 语法 blkid -L | -U blkid [-c…...

服务治理中间件-Eureka

目录 简介 搭建Eureka服务 注册服务到Eureka 简介 Eureka是Spring团队开发的服务治理中间件&#xff0c;可以轻松在项目中&#xff0c;实现服务的注册与发现&#xff0c;相比于阿里巴巴的Nacos、Apache基金会的Zookeeper&#xff0c;更加契合Spring项目&#xff0c;缺点就是…...

Javaweb之SpringBootWeb案例之异常处理功能的详细解析

3. 异常处理 3.1 当前问题 登录功能和登录校验功能我们都实现了&#xff0c;下面我们学习下今天最后一块技术点&#xff1a;异常处理。首先我们先来看一下系统出现异常之后会发生什么现象&#xff0c;再来介绍异常处理的方案。 我们打开浏览器&#xff0c;访问系统中的新增部…...

苹果Mac键盘如何将 F1 到 F12 取消按Fn

苹果电脑安装了Win10操作系统之后&#xff0c;F1到F12用不了怎么办的解决方法。本文将介绍一些解决方法&#xff0c;帮助您解决无法使用F1到F12功能键的问题。 使用 Mac系统的人都知道&#xff0c;Mac系统默认是没有开启 F1-F12 的使用的&#xff0c;平时我们使用的系统都可以使…...

linux下ipconfig命令报:command not found 解决方法

参考博文&#xff1a; linux下ipconfig命令报:command not found 解决方法 CentOS7更新yum报Could not resolve host:mirrorlist.centos.org; Unknown error解决办法...

Android导入其它项目慢,Gradel下载失败,另辟蹊径:使用离线gradle加载,附镜像方式

最近在开发中需要测试以前写的小项目。结果忘了换本地的gradle&#xff0c;提示下载失败。换了现在用的gradle&#xff0c;项目能跑了。虽然网上有很多很多教程了&#xff0c;但对我的情况也不是都适用。所以自己记录一下。本人水平有限&#xff0c;有不对的地方请帮我指正&…...

神经语言程式(NLP)项目的15 个开源训练数据集

一个聊天机器人需要大量的训练数据,以便在无需人工干预的情况下快速解决用户的询问。然而,聊天机器人开发的主要瓶颈是获取现实的、面向任务的对话数据来训练这些基于机器学习的系统。 我们整理了训练聊天机器人所需的对话数据集,包括问答数据、客户支持数据、对话数据和多…...

H5 红色文字抖动网址发布页/引导页源码

H5 红色文字抖动网址发布页/引导页源码 源码介绍&#xff1a;一款红色文字抖动网页源码&#xff0c;可用于引导页或网址发布页。 下载地址&#xff1a; https://www.changyouzuhao.cn/10470.html...

MacOS - 菜单栏上显示『音量』

教程步骤 点击打开系统偏好『设置』&#xff0c;并找到『控制中心』 在『控制中心模块』找到『声音』&#xff0c;选择『始终在菜单栏显示』...

深入理解常见的设计模式

目录 引言 1. 单例模式&#xff08;Singleton Pattern&#xff09; 应用场景&#xff1a; 示例代码&#xff1a; . 工厂模式&#xff08;Factory Pattern&#xff09; 应用场景&#xff1a; 示例代码&#xff1a; 3. 观察者模式&#xff08;Observer Pattern&#xff09…...

服务器解析漏洞及任意文件下载

1.服务器文件解析漏洞 文件解析漏洞,是指Web容器&#xff08;Apache、nginx、iis等&#xff09;在解析文件时出现了漏洞,以其他格式执行出脚本格式的效果。从而,黑客可以利用该漏洞实现非法文件的解析。 &#xff08;1) Apache linux系统中的apache的php配置文件在/etc/apac…...

ES6扩展运算符——三个点(...)用法详解

目录 1 含义 2 替代数组的 apply 方法 3 扩展运算符的应用 &#xff08; 1 &#xff09;合并数组 &#xff08; 2 &#xff09;与解构赋值结合 &#xff08; 3 &#xff09;函数的返回值 &#xff08; 4 &#xff09;字符串 &#xff08; 5 &#xff09;实现了 Iter…...

限制资源使用

限制资源使用 您需要显示对服务器资源的访问来保护Web应用程序和应用程序数据不受未授权用户的访问。在Java EE Web应用程序中,您可以通过在应用服务器中创建用户和用户组来保护资源免受未经授权的访问。您可以为应用程序定义角色并在部署过程中将角色分配给用户。 1. 创建授权…...

结合Next项目实际认识webpack.splitChunks

本文的目的在于简单的介绍webpack的优化功能配置&#xff1a;splitChunks。 webpack5出于“开箱即用”的目的&#xff0c;将大部分曾经要使用插件的功能集成到了config配置中&#xff0c;因此用户只需要了解如何配置&#xff0c;即可达到优化目的&#xff0c;其中最常使用接触的…...

【Tauri】(2):使用Tauri应用开发,使用开源的Chatgpt-web应用做前端,使用rust 的candle做后端,本地运行小模型桌面应用

视频演示地址 https://www.bilibili.com/video/BV17j421X7Zc/ 【Tauri】&#xff08;2&#xff09;&#xff1a;使用Tauri应用开发&#xff0c;使用开源的Chatgpt-web应用做前端&#xff0c;使用rust 的candle做后端&#xff0c;本地运行小模型桌面应用 1&#xff0c;做一个免…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...