ChatGPT高效提问—prompt常见用法(续篇三)
ChatGPT高效提问—prompt常见用法(续篇三)
1.1 多选项
多选项技术为模型提供了一个清晰的问题或任务,并附带一组预先定义的潜在答案。这种方法在生成仅限于特定选项集的文本方面表现出色,适用于问答、文本补全和其他任务。利用多选项技术,模型可在预定义选项范围内生成答案。
要在ChatGPT中应用多选项技术,需要将问题或任务与一组预定义选项一起输入给模型。此外,prompt应包含关于所需输出的详细信息,例如生成文本的类型以及任何特定要求或约束。这有助于引导模型在提供的选项中做出正确选择。以下是不同场景下的多选项使用方法。
1.1.1 问题回答
在多项选择场景中,我们使用的策略是在预定义选项中选出正确答案。该方法的prompt模版可以描述为“请从下述选项中选出正确答案:[嵌入问题][嵌入选项1][嵌入选项2][嵌入选项3]…“
输入prompt:

ChatGPT输出:

ChatGPT从多个选项中选择了鲸作为答案。
1.1.2 文本补全
在文本补全任务中, 我们借助预设选项来推导出合适的补全结果。这样的prompt模版可以构造为“请从以下选项中挑选合适的内容来补全文本;[嵌入不完整文本][嵌入选项1][嵌入选项2][嵌入选项3]…“
输入prompt:

ChatGPT输出:

ChatGPT从多个选项中选择了“毛衣”来补全文本。
1.1.3 情感分析
使用多选项方法,我们可以根据给定的情境准确推断出人物的感情状态。该策略的prompt模版可表述为“请判断人物的情感可能属于以下哪个选项:[插入情境][选项1][选项2][选项3]…"
输入prompt:

ChatGPT输出:

ChatGPT根据Lucy考试得了低分的情景,判断她的情绪可能是“悲伤”。
1.1.4 识别事物与观点
多选项方法适用于依据具体陈述评估其性质——是事实还是观点。此策略的prompt公式为“判断以下陈述是事实还是观点:[插入陈述][插入选项1][插入选项2]“。
输入prompt:

ChatGPT输出:

ChatGPT判断吃巧克力让人感到快乐是一个观点。
输入prompt:

ChatGPT输出:

ChatGPT判断地球围绕太阳旋转是一个事实。
这些示例涵盖了多种类型的任务和场景。借助明确设定的问题或任务以及预设选项,能够引导模型生成更为精准的答案或文本。采用多选项策略时,确保预设选项具有全面的覆盖性至关重要,有助于模型在已有的选项中找到正确答案。同时,应避免提出模糊不清的问题,防止模型产生混淆。
以上示例均可在小蜜蜂AI网站实现。网址:https://zglg.work。欢迎体验。
相关文章:
ChatGPT高效提问—prompt常见用法(续篇三)
ChatGPT高效提问—prompt常见用法(续篇三) 1.1 多选项 多选项技术为模型提供了一个清晰的问题或任务,并附带一组预先定义的潜在答案。这种方法在生成仅限于特定选项集的文本方面表现出色,适用于问答、文本补全和其他任务。利…...
IAR报错:Error[Pa045]: function “halUartInit“ has no prototype
在IAR工程.c文件末尾添加一个自己的函数,出现了报错Error[Pa045]: function "halUartInit" has no prototype 意思是没有在开头添加函数声明,即void halUartInit(void); 这个问题我们在keil中不会遇到,这是因为IAR编译器规则的一…...
C++三剑客之std::optional(一) : 使用详解
相关文章系列 C三剑客之std::optional(一) : 使用详解 C三剑客之std::any(一) : 使用 C之std::tuple(一) : 使用精讲(全) C三剑客之std::variant(一) : 使用 C三剑客之std::variant(二):深入剖析 目录 1.概述 2.构建方式 2.1.默认构造 2.2.移动构造 2.3.拷贝构…...
网络安全漏洞管理十大度量指标
当前,网络安全漏洞所带来的风险及产生的后果,影响到网络空间乃至现实世界的方方面面,通信、金融、能源、电力、铁路、医院、水务、航空、制造业等行业各类勒索、数据泄露、供应链、钓鱼等网络安全攻击事件层出不穷。因此,加强对漏…...
Swift Combine 发布者订阅者操作者 从入门到精通二
Combine 系列 Swift Combine 从入门到精通一 1. Combine核心概念 你只需要了解几个核心概念,就能使用好 Combine,但理解它们非常重要。 这些概念中的每一个都通过通用协议反映在框架中,以将概念转化为预期的功能。 这些核心概念是&#x…...
python 笔记:shapely(形状篇)
主要是点(point)、线(linestring)、面(surface) 1 基本方法和属性 object.area 返回对象的面积(浮点数) object.bounds 返回一个(minx, miny, maxx, maxy)元…...
开源的JS动画框架库介绍
开源的JS动画框架库介绍 在现代网页设计中,动画已经成为提升用户体验的重要手段。它们不仅能够吸引用户的注意力,还能够帮助用户更好地理解和导航网站。JavaScript 动画框架库提供了一套丰富的动画效果,让开发者能够轻松地实现复杂的…...
MATLAB实现随机森林回归算法
随机森林回归是一种基于集成学习的机器学习算法,它通过组合多个决策树来进行回归任务。随机森林的基本思想是通过构建多个决策树,并将它们的预测结果进行平均或投票来提高模型的准确性和鲁棒性。 以下是随机森林回归的主要特点和步骤: 决策树…...
时间序列预测——BiGRU模型
时间序列预测——BiGRU模型 时间序列预测是指根据历史数据的模式来预测未来时间点的值或趋势的过程。在深度学习领域,循环神经网络(Recurrent Neural Networks, RNNs)是常用于时间序列预测的模型之一。在RNNs的基础上,GRU&#x…...
django中实现数据库操作
在Django中,数据库操作通常通过Django的ORM(Object-Relational Mapping)来实现。ORM允许你使用Python类来表示数据库表,并可以使用Python语法来查询和操作数据库。 以下是在Django中实现数据库操作的基本步骤: 一&am…...
使用 FFmpeg 将视频转换为 GIF 动画的技巧
使用 FFmpeg 将视频转换为 GIF 动画 FFmpeg 可以将视频转换为 GIF 动画,方法如下: 1. 准备工作 确保您已经安装了 FFmpeg。 熟悉 FFmpeg 的命令行使用。 了解 GIF 动画的基本知识。 2. 基本命令 ffmpeg -i input.mp4 output.gif 3. 参数说明 -i in…...
2024春晚纸牌魔术原理----环形链表的约瑟夫问题
一.题目及剖析 https://www.nowcoder.com/practice/41c399fdb6004b31a6cbb047c641ed8a?tabnote 这道题涉及到数学原理,有一般公式,但我们先不用公式,看看如何用链表模拟出这一过程 二.思路引入 思路很简单,就试创建一个单向循环链表,然后模拟报数,删去对应的节点 三.代码引…...
HCIA-HarmonyOS设备开发认证V2.0-轻量系统内核内存管理-静态内存
目录 一、内存管理二、静态内存2.1、静态内存运行机制2.2、静态内存开发流程2.3、静态内存接口2.4、实例2.5、代码分析(待续...)坚持就有收货 一、内存管理 内存管理模块管理系统的内存资源,它是操作系统的核心模块之一,主要包括…...
什么是vite,如何使用
参考: 主要:由一次业务项目落地 Vite 的经历,我重新理解了 Vite 预构建 vite官方文档 为什么有人说 vite 快,有人却说 vite 慢? 深入理解Vite核心原理 面向未来的前端构建工具-vite 聊一聊 Vite 的预构建和二次预构建 …...
基于大语言模型的AI Agents
代理(Agent)指能自主感知环境并采取行动实现目标的智能体。基于大语言模型(LLM)的 AI Agent 利用 LLM 进行记忆检索、决策推理和行动顺序选择等,把Agent的智能程度提升到了新的高度。LLM驱动的Agent具体是怎么做的呢&a…...
23种设计模式之抽象工厂模式
目录 什么是抽象工厂模式 基本结构 基本实现步骤 实现代码(有注释) 应用场景 简单工厂、工厂方法、抽象工厂的区别 什么是抽象工厂模式 抽象工厂模式也是一种创建型设计模式,提供了一系列相关或相互依赖对象的接口,而无需…...
飞天使-linux操作的一些技巧与知识点9-zabbix6.0 容器之纸飞机告警设置
文章目录 zabbix 告警纸飞机方式webhook 方式 告警设置 zabbix 告警纸飞机方式 第一种方式参考 https://blog.csdn.net/yetugeng/article/details/99682432bash-4.4$ cat telegram.sh #!/bin/bashMSG$1TOKEN"61231432278:AAsdfsdfsdfsdHUxBwPSINc2kfOGhVik" CHAT_I…...
京东组件移动端库的使用 Nut-UI
1.介绍 NutUI NutUI-Vue 组件库,基于 Taro,使用 Vue 技术栈开发小程序应用,开箱即用,帮助研发快速开发用户界面,提升开发效率,改善开发体验。 特性 🚀 80 高质量组件,覆盖移动端主…...
用Python来实现2024年春晚刘谦魔术
简介 这是新春的第一篇,今天早上睡到了自然醒,打开手机刷视频就被刘谦的魔术所吸引,忍不住用编程去模拟一下这个过程。 首先,声明的一点,大年初一不学习,所以这其中涉及的数学原理约瑟夫环大家可以找找其…...
TestNG基础教程
TestNG基础教程 一、常用断言二、执行顺序三、依赖测试四、参数化测试1、通过dataProvider实现2、通过xml配置(这里是直接跑xml) 五、testng.xml常用配置方式1、分组维度控制2、类维度配置3、包维度配置 六、TestNG并发测试1、通过注解来实现2、通过xml来…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
