奇异值分解(SVD)的应用——图像压缩
SVD方法是模型降阶的一类重要方法,本征正交分解(POD)和平衡截断(BT)都属于SVD类方法。
要想深入了解模型降阶技术,我们可以先从SVD的应用入手,做一个直观的了解。
1. SVD的定义和分类
我们想寻找一个A的逼近:Ak,使得rank(Ak) = k < n,且|A - Ak|最小。
下面的定理(也称为Schmidt-Mirsky, Eckart-Young定理)说明矩阵A的低秩逼近可以用SVD实现:
2. SVD在图像压缩中的应用
原始图片, rank=720:
绘制其R,G,B的奇异值:
压缩图片,rank=144:
压缩图片,rank=72:
代码:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as imageA = image.imread("svd-image-compression-img.jpg")# Each pixel (typically) consists of 3 bytes — for the red, green and blue components of the color, respectively.
# So, if we want to efficiently store the image, we need to somehow efficiently encode 3 matrices R, G and B
# for each color component, respectively.
# We can extract the 3 color component matrices as briefly mentioned above as follows:
# 0xff代表十进制数值255
R = A[:,:,0] / 0xff
G = A[:,:,1] / 0xff
B = A[:,:,2] / 0xff# Now, we compute the SVD decomposition:
R_U, R_S, R_VT = np.linalg.svd(R)
G_U, G_S, G_VT = np.linalg.svd(G)
B_U, B_S, B_VT = np.linalg.svd(B)# polt the singular values
xaxis = np.arange(0, len(R_S))
plt.plot(xaxis, R_S, label='R_S')
plt.plot(xaxis, G_S, label='G_S')
plt.plot(xaxis, B_S, label='B_S')
plt.legend()relative_rank = 0.1
max_rank = int(relative_rank * min(R.shape[0], R.shape[1]))
print("max rank = %d" % max_rank) # 144def read_as_compressed(U, S, VT, k):Ak = np.zeros((U.shape[0], VT.shape[1]))for i in range(k):U_i = U[:,[i]]VT_i = np.array([VT[i]])Ak += S[i] * (U_i @ VT_i)return Ak## Actually, it is easier and more efficient to perform the same operation
## with a lower-rank matrix multiplication.
# def read_as_compressed(U, S, VT, k):
# return (U[:,:k] @ np.diag(S[:k])) @ VT[:k]R_compressed = read_as_compressed(R_U, R_S, R_VT, max_rank)
G_compressed = read_as_compressed(G_U, G_S, G_VT, max_rank)
B_compressed = read_as_compressed(B_U, B_S, B_VT, max_rank)compressed_float = np.dstack((R_compressed, G_compressed, B_compressed))
compressed = (np.minimum(compressed_float, 1.0) * 0xff).astype(np.uint8)# Plot
plt.figure()
plt.imshow(A)plt.figure()
plt.imshow(compressed)image.imsave("compressed.jpg", compressed)
参考资料:
相关文章:

奇异值分解(SVD)的应用——图像压缩
SVD方法是模型降阶的一类重要方法,本征正交分解(POD)和平衡截断(BT)都属于SVD类方法。 要想深入了解模型降阶技术,我们可以先从SVD的应用入手,做一个直观的了解。 1. SVD的定义和分类 我们想寻找…...
RTDETR改进系列指南
基于Ultralytics的RT-DETR改进项目.(89.9) 为了感谢各位对RTDETR项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程 自带的一些文件说明 train.py 训练模型的脚本main_profile.py 输出模型和模型每一层的参数,计算量的脚本(rtdetr-l和rtdetr-x因为thop库的问…...
类和结构体的区别
类(class)和结构体(struct)是面向对象编程(Object-Oriented Programming,OOP)中常见的两种数据类型,它们在不同的编程语言中有一些共同之处,但也存在一些区别。以下是它们…...
利用Excel模拟投币试验
文章目录 试验前对Excel要进行的设置试验步骤计算正面频率结果图试验前对Excel要进行的设置 进入Excel依次点击如下选项,最后将分析工具库勾选 #mermaid-svg-bIvrxZGI9buCMW6U {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#m…...

WebService接口测试
WebService的理解 WebService就是Web服务的意思,对应的应用层协议为SOAP(相当于HTTP协议),可理解为远程调用技术。 特点: 客户端发送的请求主体内容(请求报文)的格式为XML格式 接口返回的响…...

语音唤醒——
文章目录 配置主代码 参考文档:https://picovoice.ai/docs/quick-start/porcupine-python/ 配置 pip install pvporcupine主代码 ACCESS_KEY:需要将该参数填入即可 # # Copyright 2018-2023 Picovoice Inc. # # You may not use this file except in …...

typeScript 类型推论
什么是类型推论? 类型推论是 TypeScript 中的一个特性,它允许开发人员不必显式地指定变量的类型。相反,开发人员可以根据变量的使用情况让 TypeScript 编译器自动推断出类型。例如,如果开发人员将一个字符串赋值给一个变量&#…...
JavaScript 设计模式之代理模式
代理模式 其实这种模式在现在很多地方也都有使用到,如 Vue3 中的数据相应原理就是使用的 es6 中的 Proxy 代理及 Reflect 反射的方式来处理数据响应式 我们日常在使用数据请求时,也会用到一些代理的方式,比如在请求不同的域名,端…...
JavaScript 对象判断
如何判断一个对象是否是Set、Map、Array、Object 参考链接: https://blog.csdn.net/yunchong_zhao/article/details/115915624 let set new Set() let map new Map() let arr [] let obj {}console.log(Object.prototype.toString.call(obj)); // [object Obje…...

Android下SF合成流程重学习之onMessageInvalidate
Android下SF合成流程重学习之onMessageInvalidate 引言 虽然看了很多关于Android Graphics图形栈的文章和博客,但是都没有形成自己的知识点。每次学习了,仅仅是学习了而已,没有形成自己的知识体系,这次趁着有时间,这次…...

基于SpringBoot+WebSocket+Spring Task的前后端分离外卖项目-订单管理(十七)
订单管理 1. Spring Task1.1 介绍1.2 cron表达式1.3 入门案例1.3.1 Spring Task使用步骤1.3.2 代码开发1.3.3 功能测试 2.订单状态定时处理2.1 需求分析2.2 代码开发2.3 功能测试 3. WebSocket3.1 介绍3.2 入门案例3.2.1 案例分析3.2.2 代码开发3.2.3 功能测试 4. 来单提醒4.1 …...

【Java多线程进阶】JUC常见类以及CAS机制
1. Callable的用法 之前已经接触过了Runnable接口,即我们可以使用实现Runnable接口的方式创建一个线程,而Callable也是一个interface,我们也可以用Callable来创建一个线程。 Callable是一个带有泛型的interface实现Callable接口必须重写cal…...

Python算法100例-1.7 最佳存款方案
完整源代码项目地址,关注博主私信’源代码’后可获取 1.问题描述2.问题分析3.算法设计4.完整的程序 1.问题描述 假设银行一年整存零取的月息为0.63%。现在某人手中有一笔钱,他打算在今后5年中的每年年底取出1000元,到第5年时刚…...
ADO世界之FIRST
目录 一、ADO 简介 二、ADO 数据库连接 1.创建一个 DSN-less 数据库连接 2.创建一个 ODBC 数据库连接 3.到 MS Access 数据库的 ODBC 连接 4.ADO 连接对象(ADO Connection Object) 三、ADO Recordset(记录集) 1.创建一个 …...

【COMP337 LEC 5-6】
LEC 5 Perceptron : Binary Classification Algorithm 8 感应器是 单个神经元的模型 突触连接的强度取决于接受外部刺激的反应 X input W weights a x1*w1x2*w2....... > / < threshold Bias MaxIter is a hyperparameter 超参数 which has to be chosen…...

力扣72. 编辑距离(动态规划)
Problem: 72. 编辑距离 文章目录 题目描述思路复杂度Code 题目描述 思路 由于易得将字符串word1向word2转换和word2向word1转换是等效的,则我们假定统一为word1向word2转换!!! 1.确定状态:我们假设现在有下标i&#x…...
linux tree命令找不到:如何使用Linux Tree命令查看文件系统结构
Linux tree命令是一个用于显示文件夹和文件的结构的工具,它可以帮助用户更好地理解文件系统的结构。如果你在linux系统上找不到tree命令,那么可能是因为你的系统中没有安装tree命令。 解决方案 Linux tree命令是一个用于显示文件夹和文件的结构的工具&…...
OJ_最大逆序差
题目 给定一个数组,编写一个算法找出这个数组中最大的逆序差。逆序差就是i<j时,a[j]-a[i]的值 c语言实现 #include <stdio.h> #include <limits.h> // 包含INT_MIN定义 int maxReverseDifference(int arr[], int size) { if (size…...
MyBatis-Plus 实体类里写正则让字段phone限制为手机格式
/* Copyright © 2021User:啾啾修车File:ToupiaoRecord.javaDate:2021/01/12 19:29:12 */ package com.jjsos.repair.toupiao.entity; import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.mybatisplus.annotation.TableField; import com.baomido…...

K8S之运用污点、容忍度设置Pod的调度约束
污点、容忍度 污点容忍度 taints 是键值数据,用在节点上,定义污点; tolerations 是键值数据,用在pod上,定义容忍度,能容忍哪些污点。 污点 污点是定义在k8s集群的节点上的键值属性数据,可以决…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...