当前位置: 首页 > news >正文

奇异值分解(SVD)的应用——图像压缩

SVD方法是模型降阶的一类重要方法,本征正交分解(POD)和平衡截断(BT)都属于SVD类方法。

要想深入了解模型降阶技术,我们可以先从SVD的应用入手,做一个直观的了解。

1. SVD的定义和分类

我们想寻找一个A的逼近:Ak,使得rank(Ak) = k < n,且|A - Ak|最小。

下面的定理(也称为Schmidt-Mirsky, Eckart-Young定理)说明矩阵A的低秩逼近可以用SVD实现:

2. SVD在图像压缩中的应用

原始图片, rank=720:

绘制其R,G,B的奇异值:

压缩图片,rank=144:

压缩图片,rank=72:

代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as imageA = image.imread("svd-image-compression-img.jpg")# Each pixel (typically) consists of 3 bytes — for the red, green and blue components of the color, respectively. 
# So, if we want to efficiently store the image, we need to somehow efficiently encode 3 matrices R, G and B 
# for each color component, respectively.
# We can extract the 3 color component matrices as briefly mentioned above as follows:
# 0xff代表十进制数值255
R = A[:,:,0] / 0xff
G = A[:,:,1] / 0xff
B = A[:,:,2] / 0xff# Now, we compute the SVD decomposition:
R_U, R_S, R_VT = np.linalg.svd(R)
G_U, G_S, G_VT = np.linalg.svd(G)
B_U, B_S, B_VT = np.linalg.svd(B)# polt the singular values
xaxis = np.arange(0, len(R_S))
plt.plot(xaxis, R_S, label='R_S')
plt.plot(xaxis, G_S, label='G_S')
plt.plot(xaxis, B_S, label='B_S')
plt.legend()relative_rank = 0.1
max_rank = int(relative_rank * min(R.shape[0], R.shape[1]))
print("max rank = %d" % max_rank)  # 144def read_as_compressed(U, S, VT, k):Ak = np.zeros((U.shape[0], VT.shape[1]))for i in range(k):U_i = U[:,[i]]VT_i = np.array([VT[i]])Ak += S[i] * (U_i @ VT_i)return Ak## Actually, it is easier and more efficient to perform the same operation 
## with a lower-rank matrix multiplication.
# def read_as_compressed(U, S, VT, k):
#     return (U[:,:k] @ np.diag(S[:k])) @ VT[:k]R_compressed = read_as_compressed(R_U, R_S, R_VT, max_rank)
G_compressed = read_as_compressed(G_U, G_S, G_VT, max_rank)
B_compressed = read_as_compressed(B_U, B_S, B_VT, max_rank)compressed_float = np.dstack((R_compressed, G_compressed, B_compressed))
compressed = (np.minimum(compressed_float, 1.0) * 0xff).astype(np.uint8)# Plot
plt.figure()
plt.imshow(A)plt.figure()
plt.imshow(compressed)image.imsave("compressed.jpg", compressed)

参考资料:

[A.C. Antoulas 2001] Approximation of large-scale dynamical systems: An overview
[潘建瑜] 矩阵计算_讲义 
Compressing images with singular value decomposition (SVD) | ZeroBone

相关文章:

奇异值分解(SVD)的应用——图像压缩

SVD方法是模型降阶的一类重要方法&#xff0c;本征正交分解&#xff08;POD&#xff09;和平衡截断&#xff08;BT&#xff09;都属于SVD类方法。 要想深入了解模型降阶技术&#xff0c;我们可以先从SVD的应用入手&#xff0c;做一个直观的了解。 1. SVD的定义和分类 我们想寻找…...

RTDETR改进系列指南

基于Ultralytics的RT-DETR改进项目.(89.9) 为了感谢各位对RTDETR项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程 自带的一些文件说明 train.py 训练模型的脚本main_profile.py 输出模型和模型每一层的参数,计算量的脚本(rtdetr-l和rtdetr-x因为thop库的问…...

类和结构体的区别

类&#xff08;class&#xff09;和结构体&#xff08;struct&#xff09;是面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;中常见的两种数据类型&#xff0c;它们在不同的编程语言中有一些共同之处&#xff0c;但也存在一些区别。以下是它们…...

利用Excel模拟投币试验

文章目录 试验前对Excel要进行的设置试验步骤计算正面频率结果图试验前对Excel要进行的设置 进入Excel依次点击如下选项,最后将分析工具库勾选 #mermaid-svg-bIvrxZGI9buCMW6U {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#m…...

WebService接口测试

WebService的理解 WebService就是Web服务的意思&#xff0c;对应的应用层协议为SOAP&#xff08;相当于HTTP协议&#xff09;&#xff0c;可理解为远程调用技术。 特点&#xff1a; 客户端发送的请求主体内容&#xff08;请求报文&#xff09;的格式为XML格式 接口返回的响…...

语音唤醒——

文章目录 配置主代码 参考文档&#xff1a;https://picovoice.ai/docs/quick-start/porcupine-python/ 配置 pip install pvporcupine主代码 ACCESS_KEY&#xff1a;需要将该参数填入即可 # # Copyright 2018-2023 Picovoice Inc. # # You may not use this file except in …...

typeScript 类型推论

什么是类型推论&#xff1f; 类型推论是 TypeScript 中的一个特性&#xff0c;它允许开发人员不必显式地指定变量的类型。相反&#xff0c;开发人员可以根据变量的使用情况让 TypeScript 编译器自动推断出类型。例如&#xff0c;如果开发人员将一个字符串赋值给一个变量&#…...

JavaScript 设计模式之代理模式

代理模式 其实这种模式在现在很多地方也都有使用到&#xff0c;如 Vue3 中的数据相应原理就是使用的 es6 中的 Proxy 代理及 Reflect 反射的方式来处理数据响应式 我们日常在使用数据请求时&#xff0c;也会用到一些代理的方式&#xff0c;比如在请求不同的域名&#xff0c;端…...

JavaScript 对象判断

如何判断一个对象是否是Set、Map、Array、Object 参考链接&#xff1a; https://blog.csdn.net/yunchong_zhao/article/details/115915624 let set new Set() let map new Map() let arr [] let obj {}console.log(Object.prototype.toString.call(obj)); // [object Obje…...

Android下SF合成流程重学习之onMessageInvalidate

Android下SF合成流程重学习之onMessageInvalidate 引言 虽然看了很多关于Android Graphics图形栈的文章和博客&#xff0c;但是都没有形成自己的知识点。每次学习了&#xff0c;仅仅是学习了而已&#xff0c;没有形成自己的知识体系&#xff0c;这次趁着有时间&#xff0c;这次…...

基于SpringBoot+WebSocket+Spring Task的前后端分离外卖项目-订单管理(十七)

订单管理 1. Spring Task1.1 介绍1.2 cron表达式1.3 入门案例1.3.1 Spring Task使用步骤1.3.2 代码开发1.3.3 功能测试 2.订单状态定时处理2.1 需求分析2.2 代码开发2.3 功能测试 3. WebSocket3.1 介绍3.2 入门案例3.2.1 案例分析3.2.2 代码开发3.2.3 功能测试 4. 来单提醒4.1 …...

【Java多线程进阶】JUC常见类以及CAS机制

1. Callable的用法 之前已经接触过了Runnable接口&#xff0c;即我们可以使用实现Runnable接口的方式创建一个线程&#xff0c;而Callable也是一个interface&#xff0c;我们也可以用Callable来创建一个线程。 Callable是一个带有泛型的interface实现Callable接口必须重写cal…...

Python算法100例-1.7 最佳存款方案

完整源代码项目地址&#xff0c;关注博主私信’源代码’后可获取 1.问题描述2.问题分析3.算法设计4.完整的程序 1&#xff0e;问题描述 假设银行一年整存零取的月息为0.63%。现在某人手中有一笔钱&#xff0c;他打算在今后5年中的每年年底取出1000元&#xff0c;到第5年时刚…...

ADO世界之FIRST

目录 一、ADO 简介 二、ADO 数据库连接 1.创建一个 DSN-less 数据库连接 2.创建一个 ODBC 数据库连接 3.到 MS Access 数据库的 ODBC 连接 4.ADO 连接对象&#xff08;ADO Connection Object&#xff09; 三、ADO Recordset&#xff08;记录集&#xff09; 1.创建一个 …...

【COMP337 LEC 5-6】

LEC 5 Perceptron &#xff1a; Binary Classification Algorithm 8 感应器是 单个神经元的模型 突触连接的强度取决于接受外部刺激的反应 X input W weights a x1*w1x2*w2....... > / < threshold Bias MaxIter is a hyperparameter 超参数 which has to be chosen…...

力扣72. 编辑距离(动态规划)

Problem: 72. 编辑距离 文章目录 题目描述思路复杂度Code 题目描述 思路 由于易得将字符串word1向word2转换和word2向word1转换是等效的&#xff0c;则我们假定统一为word1向word2转换&#xff01;&#xff01;&#xff01; 1.确定状态&#xff1a;我们假设现在有下标i&#x…...

linux tree命令找不到:如何使用Linux Tree命令查看文件系统结构

Linux tree命令是一个用于显示文件夹和文件的结构的工具&#xff0c;它可以帮助用户更好地理解文件系统的结构。如果你在linux系统上找不到tree命令&#xff0c;那么可能是因为你的系统中没有安装tree命令。 解决方案 Linux tree命令是一个用于显示文件夹和文件的结构的工具&…...

OJ_最大逆序差

题目 给定一个数组&#xff0c;编写一个算法找出这个数组中最大的逆序差。逆序差就是i<j时&#xff0c;a[j]-a[i]的值 c语言实现 #include <stdio.h> #include <limits.h> // 包含INT_MIN定义 int maxReverseDifference(int arr[], int size) { if (size…...

MyBatis-Plus 实体类里写正则让字段phone限制为手机格式

/* Copyright © 2021User:啾啾修车File:ToupiaoRecord.javaDate:2021/01/12 19:29:12 */ package com.jjsos.repair.toupiao.entity; import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.mybatisplus.annotation.TableField; import com.baomido…...

K8S之运用污点、容忍度设置Pod的调度约束

污点、容忍度 污点容忍度 taints 是键值数据&#xff0c;用在节点上&#xff0c;定义污点&#xff1b; tolerations 是键值数据&#xff0c;用在pod上&#xff0c;定义容忍度&#xff0c;能容忍哪些污点。 污点 污点是定义在k8s集群的节点上的键值属性数据&#xff0c;可以决…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...