当前位置: 首页 > news >正文

奇异值分解(SVD)的应用——图像压缩

SVD方法是模型降阶的一类重要方法,本征正交分解(POD)和平衡截断(BT)都属于SVD类方法。

要想深入了解模型降阶技术,我们可以先从SVD的应用入手,做一个直观的了解。

1. SVD的定义和分类

我们想寻找一个A的逼近:Ak,使得rank(Ak) = k < n,且|A - Ak|最小。

下面的定理(也称为Schmidt-Mirsky, Eckart-Young定理)说明矩阵A的低秩逼近可以用SVD实现:

2. SVD在图像压缩中的应用

原始图片, rank=720:

绘制其R,G,B的奇异值:

压缩图片,rank=144:

压缩图片,rank=72:

代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as imageA = image.imread("svd-image-compression-img.jpg")# Each pixel (typically) consists of 3 bytes — for the red, green and blue components of the color, respectively. 
# So, if we want to efficiently store the image, we need to somehow efficiently encode 3 matrices R, G and B 
# for each color component, respectively.
# We can extract the 3 color component matrices as briefly mentioned above as follows:
# 0xff代表十进制数值255
R = A[:,:,0] / 0xff
G = A[:,:,1] / 0xff
B = A[:,:,2] / 0xff# Now, we compute the SVD decomposition:
R_U, R_S, R_VT = np.linalg.svd(R)
G_U, G_S, G_VT = np.linalg.svd(G)
B_U, B_S, B_VT = np.linalg.svd(B)# polt the singular values
xaxis = np.arange(0, len(R_S))
plt.plot(xaxis, R_S, label='R_S')
plt.plot(xaxis, G_S, label='G_S')
plt.plot(xaxis, B_S, label='B_S')
plt.legend()relative_rank = 0.1
max_rank = int(relative_rank * min(R.shape[0], R.shape[1]))
print("max rank = %d" % max_rank)  # 144def read_as_compressed(U, S, VT, k):Ak = np.zeros((U.shape[0], VT.shape[1]))for i in range(k):U_i = U[:,[i]]VT_i = np.array([VT[i]])Ak += S[i] * (U_i @ VT_i)return Ak## Actually, it is easier and more efficient to perform the same operation 
## with a lower-rank matrix multiplication.
# def read_as_compressed(U, S, VT, k):
#     return (U[:,:k] @ np.diag(S[:k])) @ VT[:k]R_compressed = read_as_compressed(R_U, R_S, R_VT, max_rank)
G_compressed = read_as_compressed(G_U, G_S, G_VT, max_rank)
B_compressed = read_as_compressed(B_U, B_S, B_VT, max_rank)compressed_float = np.dstack((R_compressed, G_compressed, B_compressed))
compressed = (np.minimum(compressed_float, 1.0) * 0xff).astype(np.uint8)# Plot
plt.figure()
plt.imshow(A)plt.figure()
plt.imshow(compressed)image.imsave("compressed.jpg", compressed)

参考资料:

[A.C. Antoulas 2001] Approximation of large-scale dynamical systems: An overview
[潘建瑜] 矩阵计算_讲义 
Compressing images with singular value decomposition (SVD) | ZeroBone

相关文章:

奇异值分解(SVD)的应用——图像压缩

SVD方法是模型降阶的一类重要方法&#xff0c;本征正交分解&#xff08;POD&#xff09;和平衡截断&#xff08;BT&#xff09;都属于SVD类方法。 要想深入了解模型降阶技术&#xff0c;我们可以先从SVD的应用入手&#xff0c;做一个直观的了解。 1. SVD的定义和分类 我们想寻找…...

RTDETR改进系列指南

基于Ultralytics的RT-DETR改进项目.(89.9) 为了感谢各位对RTDETR项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程 自带的一些文件说明 train.py 训练模型的脚本main_profile.py 输出模型和模型每一层的参数,计算量的脚本(rtdetr-l和rtdetr-x因为thop库的问…...

类和结构体的区别

类&#xff08;class&#xff09;和结构体&#xff08;struct&#xff09;是面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;中常见的两种数据类型&#xff0c;它们在不同的编程语言中有一些共同之处&#xff0c;但也存在一些区别。以下是它们…...

利用Excel模拟投币试验

文章目录 试验前对Excel要进行的设置试验步骤计算正面频率结果图试验前对Excel要进行的设置 进入Excel依次点击如下选项,最后将分析工具库勾选 #mermaid-svg-bIvrxZGI9buCMW6U {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#m…...

WebService接口测试

WebService的理解 WebService就是Web服务的意思&#xff0c;对应的应用层协议为SOAP&#xff08;相当于HTTP协议&#xff09;&#xff0c;可理解为远程调用技术。 特点&#xff1a; 客户端发送的请求主体内容&#xff08;请求报文&#xff09;的格式为XML格式 接口返回的响…...

语音唤醒——

文章目录 配置主代码 参考文档&#xff1a;https://picovoice.ai/docs/quick-start/porcupine-python/ 配置 pip install pvporcupine主代码 ACCESS_KEY&#xff1a;需要将该参数填入即可 # # Copyright 2018-2023 Picovoice Inc. # # You may not use this file except in …...

typeScript 类型推论

什么是类型推论&#xff1f; 类型推论是 TypeScript 中的一个特性&#xff0c;它允许开发人员不必显式地指定变量的类型。相反&#xff0c;开发人员可以根据变量的使用情况让 TypeScript 编译器自动推断出类型。例如&#xff0c;如果开发人员将一个字符串赋值给一个变量&#…...

JavaScript 设计模式之代理模式

代理模式 其实这种模式在现在很多地方也都有使用到&#xff0c;如 Vue3 中的数据相应原理就是使用的 es6 中的 Proxy 代理及 Reflect 反射的方式来处理数据响应式 我们日常在使用数据请求时&#xff0c;也会用到一些代理的方式&#xff0c;比如在请求不同的域名&#xff0c;端…...

JavaScript 对象判断

如何判断一个对象是否是Set、Map、Array、Object 参考链接&#xff1a; https://blog.csdn.net/yunchong_zhao/article/details/115915624 let set new Set() let map new Map() let arr [] let obj {}console.log(Object.prototype.toString.call(obj)); // [object Obje…...

Android下SF合成流程重学习之onMessageInvalidate

Android下SF合成流程重学习之onMessageInvalidate 引言 虽然看了很多关于Android Graphics图形栈的文章和博客&#xff0c;但是都没有形成自己的知识点。每次学习了&#xff0c;仅仅是学习了而已&#xff0c;没有形成自己的知识体系&#xff0c;这次趁着有时间&#xff0c;这次…...

基于SpringBoot+WebSocket+Spring Task的前后端分离外卖项目-订单管理(十七)

订单管理 1. Spring Task1.1 介绍1.2 cron表达式1.3 入门案例1.3.1 Spring Task使用步骤1.3.2 代码开发1.3.3 功能测试 2.订单状态定时处理2.1 需求分析2.2 代码开发2.3 功能测试 3. WebSocket3.1 介绍3.2 入门案例3.2.1 案例分析3.2.2 代码开发3.2.3 功能测试 4. 来单提醒4.1 …...

【Java多线程进阶】JUC常见类以及CAS机制

1. Callable的用法 之前已经接触过了Runnable接口&#xff0c;即我们可以使用实现Runnable接口的方式创建一个线程&#xff0c;而Callable也是一个interface&#xff0c;我们也可以用Callable来创建一个线程。 Callable是一个带有泛型的interface实现Callable接口必须重写cal…...

Python算法100例-1.7 最佳存款方案

完整源代码项目地址&#xff0c;关注博主私信’源代码’后可获取 1.问题描述2.问题分析3.算法设计4.完整的程序 1&#xff0e;问题描述 假设银行一年整存零取的月息为0.63%。现在某人手中有一笔钱&#xff0c;他打算在今后5年中的每年年底取出1000元&#xff0c;到第5年时刚…...

ADO世界之FIRST

目录 一、ADO 简介 二、ADO 数据库连接 1.创建一个 DSN-less 数据库连接 2.创建一个 ODBC 数据库连接 3.到 MS Access 数据库的 ODBC 连接 4.ADO 连接对象&#xff08;ADO Connection Object&#xff09; 三、ADO Recordset&#xff08;记录集&#xff09; 1.创建一个 …...

【COMP337 LEC 5-6】

LEC 5 Perceptron &#xff1a; Binary Classification Algorithm 8 感应器是 单个神经元的模型 突触连接的强度取决于接受外部刺激的反应 X input W weights a x1*w1x2*w2....... > / < threshold Bias MaxIter is a hyperparameter 超参数 which has to be chosen…...

力扣72. 编辑距离(动态规划)

Problem: 72. 编辑距离 文章目录 题目描述思路复杂度Code 题目描述 思路 由于易得将字符串word1向word2转换和word2向word1转换是等效的&#xff0c;则我们假定统一为word1向word2转换&#xff01;&#xff01;&#xff01; 1.确定状态&#xff1a;我们假设现在有下标i&#x…...

linux tree命令找不到:如何使用Linux Tree命令查看文件系统结构

Linux tree命令是一个用于显示文件夹和文件的结构的工具&#xff0c;它可以帮助用户更好地理解文件系统的结构。如果你在linux系统上找不到tree命令&#xff0c;那么可能是因为你的系统中没有安装tree命令。 解决方案 Linux tree命令是一个用于显示文件夹和文件的结构的工具&…...

OJ_最大逆序差

题目 给定一个数组&#xff0c;编写一个算法找出这个数组中最大的逆序差。逆序差就是i<j时&#xff0c;a[j]-a[i]的值 c语言实现 #include <stdio.h> #include <limits.h> // 包含INT_MIN定义 int maxReverseDifference(int arr[], int size) { if (size…...

MyBatis-Plus 实体类里写正则让字段phone限制为手机格式

/* Copyright © 2021User:啾啾修车File:ToupiaoRecord.javaDate:2021/01/12 19:29:12 */ package com.jjsos.repair.toupiao.entity; import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.mybatisplus.annotation.TableField; import com.baomido…...

K8S之运用污点、容忍度设置Pod的调度约束

污点、容忍度 污点容忍度 taints 是键值数据&#xff0c;用在节点上&#xff0c;定义污点&#xff1b; tolerations 是键值数据&#xff0c;用在pod上&#xff0c;定义容忍度&#xff0c;能容忍哪些污点。 污点 污点是定义在k8s集群的节点上的键值属性数据&#xff0c;可以决…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...