当前位置: 首页 > news >正文

NC文件不规则裁剪(利用shp文件裁剪)(三)

文章目录

  • 前言
  • 实例数据
  • 代码部分
    • 需要的库
    • 加载文件
    • 写入地理信息
    • 裁剪NC
    • 结果
  • 完整代码奉上

前言

Hello大家好呀,最近正好需要用到多个SHP去裁剪NC,按照我以前的两种办法(办法1和办法2)操作的话,我自己都会破防,在偶然的情况下发现了rioxarray这个库。这个库可以将坐标信息直接写入到NC之中,从而直接使用shp裁剪,比原先的方法更为简单明了。

实例数据

本次测试数据采用2m气温数据,下载链接:点我直接下载;
NC数据打开后如下图所示,该数据为逐月的三维数据。
在这里插入图片描述

SHP数据我就直接采用NOAA公开的海岸线数据吧,主要是涉及到中国的SHP极大可能性会被平台封文章。下载链接:点我直接下载。数据如下图所示,我用的文件是GSHHS_i_L1.shp

在这里插入图片描述

代码部分

需要的库

本次我们需要用到以下四个库,这几个库都可以直接用pip安装比较方便。

import xarray as xr
import rioxarray
import geopandas as gpd
from shapely.geometry import mapping

加载文件

ds = xr.open_dataset(r'C:\Users\Administrator\Downloads/air.2m.mon.mean.nc') # 加载NC文件
# ds['lon'] = ds['lon'] -180
shp = gpd.read_file(r"D:\BaiduNetdiskDownload\gshhg-shp-2.3.7\GSHHS_shp\i/GSHHS_i_L1.shp") # 加载shp文件

写入地理信息

ds.rio.write_crs("epsg:4326", inplace=True) # 向NC文件中写入WGS84坐标系信息
ds.rio.set_spatial_dims(x_dim="lon", y_dim="lat", inplace=True) # 指定NC文件的xy识别名称

裁剪NC

ds = ds.rio.clip(shp.geometry.apply(mapping),shp.crs,drop=False)

结果

在这里插入图片描述

结果是出来了,但是我们会发现,数据只有0-180度之间的,而-180-0之间的数据没有了,造成这个问题的原因就是NCEP数据的lon是从0-360的,而这个库识别不出来。因此在裁剪之前我们需要仔细的观察一下数据的lon是否是从-180开始的。如果是从-180开始的就不用管了,如果是从0开始的就需要将加载文件那一步中的ds[‘lon’] = ds[‘lon’] -180取消注释。

经过lon处理后的结果就是正常的啦!!
在这里插入图片描述

完整代码奉上

import xarray as xr
import rioxarray
import geopandas as gpd
from shapely.geometry import mappingds = xr.open_dataset(r'C:\Users\Administrator\Downloads/air.2m.mon.mean.nc')
# ds['lon'] = ds['lon'] - 180 # 根据实际NC文件的经度范围确定是否开启这一行
shp = gpd.read_file(r"D:\BaiduNetdiskDownload\gshhg-shp-2.3.7\GSHHS_shp\i/GSHHS_i_L1.shp")ds.rio.write_crs("epsg:4326", inplace=True)
ds.rio.set_spatial_dims(x_dim="lon", y_dim="lat", inplace=True)ds = ds.rio.clip(shp.geometry.apply(mapping),shp.crs,drop=False)ds.to_netcdf(r'D:\CSDN/air.2m.mon.mean_clip.nc') # 保存NC文件

相关文章:

NC文件不规则裁剪(利用shp文件裁剪)(三)

文章目录 前言实例数据代码部分需要的库加载文件写入地理信息裁剪NC结果 完整代码奉上 前言 Hello大家好呀,最近正好需要用到多个SHP去裁剪NC,按照我以前的两种办法(办法1和办法2)操作的话,我自己都会破防&#xff0c…...

java 宠物在线商城系统Myeclipse开发mysql数据库web结构jsp编程servlet计算机网页项目

一、源码特点 java 宠物在线商城系统是一套完善的java web信息管理系统 servletdaobean mvc模式,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S 模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&…...

三防平板丨手持工业平板丨ONERugged工业三防平板丨推动数字化转型

随着科技的发展,数字化转型已经成为企业转型升级的必由之路。而在数字化转型中,三防平板作为一种重要的工具,可以极大地推动企业的数字化转型。本文将从以下几个方面探讨三防平板如何推动数字化转型。 一、提高工作效率 ONERugged加固平板的…...

【Linux | C++ 】基于环形队列的多生产者多消费者模型(Linux系统下C++ 代码模拟实现)

阅读导航 引言一、生产者消费者模型二、环形队列简介三、基于环形队列的生产者消费者模型(C 代码模拟实现)⭕Makefile文件⭕ . h 头文件✅sem.hpp✅ringQueue.hpp ⭕ . cpp 文件✅testMain.cpp 温馨提示 引言 在上一篇文章中,我们深入探讨了…...

【Docker】Docker存储卷

文章目录 一、什么是存储卷二、为什么需要存储卷三、存储卷分类四、管理卷Volume创建卷方式一:Volume 命令操作方式二:-v 或者--mount 指定方式三:Dockerfile 匿名卷 操作案例Docker 命令创建管理卷Docker -v 创建管理卷Docker mount 创建管理…...

基于python的租车管理平台/汽车租赁网站

功能介绍 平台采用B/S结构,后端采用主流的Python语言进行开发,前端采用主流的Vue.js进行开发。 整个平台包括前台和后台两个部分。 前台功能包括:首页、详情页、用户中心、家政入驻模块。后台功能包括:总览、车辆管理、分类管理…...

【JVM】双亲委派机制

📝个人主页:五敷有你 🔥系列专栏:JVM ⛺️稳中求进,晒太阳 双亲委派机制 在Java中如何使用代码的方式去主动加载一个类呢? 方式1:使用Class.forName方法,使用当前类的类加载…...

分布式id实战

目录 常用方式 特征 潜在问题 信息安全 高性能 UUID 雪花算法 数据库生成 美团Leaf方案 Leaf-segment 数据库方案 Leaf-snowflake 方案 常用方式 uuid雪花算法数据库主键 特征 全局唯一趋势递增信息安全 潜在问题 信息安全 如果id连续递增, 容易被爬虫, 批量下…...

深入了解 SOCKS5 代理、代理 IP 和 HTTP

在网络通信和数据传输中,代理服务器扮演着至关重要的角色。本文将深入探讨 SOCKS5 代理、代理 IP 和 HTTP,揭示它们的工作原理、应用场景以及优缺点。 1. SOCKS5 代理 SOCKS(Socket Secure)是一种网络协议,允许客户端…...

外包干了3个多月,技术退步明显。。。。

先说一下自己的情况,本科生,19年通过校招进入广州某软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

Unity之闪电侠大战蓝毒兽(简陋的战斗系统)

目录 🎨一、创建地形 🎮二、创建角色 🏃2.1 动画 🏃2.2 拖尾 🏃2.3 角色控制 ​🏃2.4 技能释放 🏃2.5 准星 📱三、创建敌人 🐲3.1 选择模型 🐲3.…...

C# 菜鸟级别有关于redis的使用

public IActionResult Index() { ConnectionMultiplexer _conn ConnectionMultiplexer.Connect("127.0.0.1:6379");//初始化 var database _conn.GetDatabase(7);//指定连接的库 0 RedisHelper redisHelper new Redi…...

AlexNet的出现推动深度学习的巨大发展

尽管AlexNet(2012)的代码只比LeNet(1998)多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出色的实验结果。 AlexNet(由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton共同设计…...

2024面试offer收割宝典字节篇

1.IO 模型有哪些,讲讲你理解的 nio ,他和 bio,aio 的区别是啥, 谈谈 reactor 模型。 IO 模型主要包括以下几种:1. 阻塞 I/O (BIO): 当一个线程调用 read() 或 write() 系统调用时,如果数据没有准备好或者缓冲区已满,则该线程会被操作系统阻塞,直到有数据可读或写入完…...

冒泡排序及其优化

冒泡排序 int[] arr {1,3,2,9,4,7,2,8};//比较多少轮(n个数字比较n-1次)for(int i0,n arr.length;i<n-1;i) {//每轮比较多少次(n-1-i次)for(int j 0;j<n-1-i;j) {//两两比较if(arr[j] > arr[j1]) { //比较结果为升序排列&#xff0c;如果想要降序排列结果将 >…...

【医学大模型 补全主诉】BioGPT + LSTM 自动补全医院紧急部门主诉

BioGPT LSTM 自动补全医院紧急部门主诉 问题&#xff1a;针对在紧急部门中自动补全主诉的问题子问题1: 提高主诉记录的准确性子问题2: 加快主诉记录的速度子问题3: 统一医疗术语的使用子问题4: 减少打字错误和误解子问题5: 提高非特定主诉的处理能力 解法数据预处理神经网络方…...

HCIE-Datacom证书有效期多久?HCIE考试有哪些内容?

如今越来越多的人开始关注并参与到华为认证的学习中来。 其中&#xff0c;华为认证数据通信专家(HCIE-Datacom)作为华为认证体系中的高级认证&#xff0c;备受瞩目。 那么&#xff0c;关于HCIE-Datacom证书的有效期以及HCIE考试的内容&#xff0c;你知道多少呢&#xff1f;下…...

OpenCV中的边缘检测技术及实现

边缘检测是在电脑如何理解图片这一问题中的一环&#xff0c;它帮助电脑找出照片里的轮廓和分界线。想象一下你在看一幅黑白漫画&#xff0c;轮廓线定义了每一个角色和物体&#xff0c;而电脑要做的&#xff0c;就是通过边缘检测来找出这些线条。这在很多像是图像分析这样的领域…...

机器学习基础(一)理解机器学习的本质

导读&#xff1a;在本文中&#xff0c;将深入探索机器学习的根本原理&#xff0c;包括基本概念、分类及如何通过构建预测模型来应用这些理论。 目录 机器学习 机器学习概念 相关概念 机器学习根本&#xff1a;模型 数据的语言&#xff1a;特征与标签 训练与测试&#xf…...

Eclipse - Makefile generation

Eclipse - Makefile generation References right mouse click on the project -> Properties -> C/C Build -> Generate Makefiles automatically 默认会在 Debug 目录下创建 Makefile 文件。 References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...