挑战杯 基于LSTM的天气预测 - 时间序列预测
0 前言
🔥 优质竞赛项目系列,今天要分享的是
机器学习大数据分析项目
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 数据集介绍
df = pd.read_csv(‘/home/kesci/input/jena1246/jena_climate_2009_2016.csv’)
df.head()
如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。
给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。
下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。
下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。
def univariate_data(dataset, start_index, end_index, history_size, target_size):
data = []
labels = []
start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i)# Reshape data from (history`1_size,) to (history_size, 1)data.append(np.reshape(dataset[indices], (history_size, 1)))labels.append(dataset[i+target_size])return np.array(data), np.array(labels)
2 开始分析
2.1 单变量分析
首先,使用一个特征(温度)训练模型,并在使用该模型做预测。
2.1.1 温度变量
从数据集中提取温度
uni_data = df[‘T (degC)’]
uni_data.index = df[‘Date Time’]
uni_data.head()
观察数据随时间变化的情况
进行标准化
#标准化
uni_train_mean = uni_data[:TRAIN_SPLIT].mean()
uni_train_std = uni_data[:TRAIN_SPLIT].std()
uni_data = (uni_data-uni_train_mean)/uni_train_std
#写函数来划分特征和标签
univariate_past_history = 20
univariate_future_target = 0
x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT, # 起止区间univariate_past_history,univariate_future_target)
x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None,univariate_past_history,univariate_future_target)
可见第一个样本的特征为前20个时间点的温度,其标签为第21个时间点的温度。根据同样的规律,第二个样本的特征为第2个时间点的温度值到第21个时间点的温度值,其标签为第22个时间点的温度……
2.2 将特征和标签切片
BATCH_SIZE = 256
BUFFER_SIZE = 10000
train_univariate = tf.data.Dataset.from_tensor_slices((x_train_uni, y_train_uni))
train_univariate = train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()val_univariate = tf.data.Dataset.from_tensor_slices((x_val_uni, y_val_uni))
val_univariate = val_univariate.batch(BATCH_SIZE).repeat()
2.3 建模
simple_lstm_model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(8, input_shape=x_train_uni.shape[-2:]), # input_shape=(20,1) 不包含批处理维度
tf.keras.layers.Dense(1)
])
simple_lstm_model.compile(optimizer='adam', loss='mae')
2.4 训练模型
EVALUATION_INTERVAL = 200
EPOCHS = 10
simple_lstm_model.fit(train_univariate, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_univariate, validation_steps=50)
训练过程
训练结果 - 温度预测结果
2.5 多变量分析
在这里,我们用过去的一些压强信息、温度信息以及密度信息来预测未来的一个时间点的温度。也就是说,数据集中应该包括压强信息、温度信息以及密度信息。
2.5.1 压强、温度、密度随时间变化绘图
2.5.2 将数据集转换为数组类型并标准化
dataset = features.values
data_mean = dataset[:TRAIN_SPLIT].mean(axis=0)
data_std = dataset[:TRAIN_SPLIT].std(axis=0)
dataset = (dataset-data_mean)/data_stddef multivariate_data(dataset, target, start_index, end_index, history_size,target_size, step, single_step=False):data = []labels = []start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i, step) # step表示滑动步长data.append(dataset[indices])if single_step:labels.append(target[i+target_size])else:labels.append(target[i:i+target_size])return np.array(data), np.array(labels)
2.5.3 多变量建模训练训练
single_step_model = tf.keras.models.Sequential()single_step_model.add(tf.keras.layers.LSTM(32,input_shape=x_train_single.shape[-2:]))single_step_model.add(tf.keras.layers.Dense(1))single_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='mae')single_step_history = single_step_model.fit(train_data_single, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_single,validation_steps=50)def plot_train_history(history, title):loss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'b', label='Training loss')plt.plot(epochs, val_loss, 'r', label='Validation loss')plt.title(title)plt.legend()plt.show()plot_train_history(single_step_history,'Single Step Training and validation loss')
6 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

挑战杯 基于LSTM的天气预测 - 时间序列预测
0 前言 🔥 优质竞赛项目系列,今天要分享的是 机器学习大数据分析项目 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/po…...

我为什么不喜欢关电脑?
程序员为什么不喜欢关电脑? 你是否注意到,程序员们似乎从不关电脑?别以为他们是电脑上瘾,实则是有他们自己的原因!让我们一起揭秘背后的原因,看看程序员们真正的“英雄”本色! 一、上大学时。 …...
Unity【角色/摄像机移动控制】【1.角色移动】
本文主要总结实现角色移动的解决方案。 1. 创建脚本:PlayerController 2. 创建游戏角色Player,在Player下挂载PlayerController脚本 3. 把Camera挂载到Player的子物体中,调整视角,以实现相机跟随效果 3. PlayerController脚本代码…...
Oracle12cR2之Job定时作业调度器详解
Oracle12cR2之Job定时作业调度器详解 文章目录 Oracle12cR2之Job定时作业调度器详解1.Oracle Job1. 关于Job2. 使用方法 2. Job详细说明1. 查看Job的相关视图2.SYS.DBA_JOBS视图字段详细说明 3. 创建及查看Job1. 创建Job2. 查看运行中的Job 1.Oracle Job 1. 关于Job 在 Oracle…...

python自学...
一、稍微高级一点的。。。 1. 闭包(跟js差不多) 2. 装饰器 就是spring的aop 3. 多线程...
Message Pack 协议详解及应用
文章目录 一、Message Pack是什么二、Message Pack的语法规则三、Message Pack相关链接四、Message Pack应用场景五、MessagePack 兼容性与特点 一、Message Pack是什么 Message Pack是一种高效的二进制序列化格式,用于在不同的应用程序之间进行数据交换。它类似于J…...

智慧社区管理系统:构建未来的生活模式
在这个信息化、智能化的时代,我们期待的不再是简单的居住空间,而是一个集安全、便捷、舒适、环保于一体的智能化社区。为此,我们推出了全新的智慧社区管理系统,旨在将先进的科技力量引入社区管理,为居民提供更优质的生…...

Rocky 8.9 Kubespray v2.24.0 在线部署 kubernetes v1.28.6 集群
文章目录 1. 简介2. 预备条件3. 基础配置3.1 配置hostname3.2 配置互信 4. 配置部署环境4.1 在线安装docker4.2 启动容器 kubespray4.3 编写 inventory.ini4.4 关闭防火墙、swap、selinux4.5 配置内核模块 5. 部署6. 集群检查 1. 简介 kubespray 是一个用于部署和管理 Kuber…...

新版AI系统ChatGPT源码支持GPT-4/支持AI绘画去授权
源码获取方式 搜一搜:万能工具箱合集 点击资源库直接进去获取源码即可 如果没看到就是待更新,会陆续更新上 新版AI系统ChatGPT网站源码支持GPT-4/支持AI绘画/Prompt应用/MJ绘画源码/PCH5端/免授权,支持关联上下文,意间绘画模型…...

学习鸿蒙基础(5)
一、honmonyos的page路由界面的路径 新建了一个page,然后删除了。运行模拟器的时候报错了。提示找不到这个界面。原来是在路由界面没有删除这个page。新手刚接触找了半天才找到这个路由。在resources/base/profile/main_pages.json 这个和微信小程序好类似呀。 吐槽…...

Tuxera NTFS2024最新中文版支持M1/M2/M3苹果全系机型
Tuxera NTFS的传输速度会受到多种因素的影响,包括硬件配置、文件大小、存储设备的性能等。因此,无法给出具体的传输速度数值。 不过,根据一些用户的使用经验和测试数据,Tuxera NTFS的传输速度通常都非常快,能够满足大…...

【Python】OpenCV-图片添加水印处理
图片添加水印处理 1. 引言 图像处理中的水印添加是一种常见的操作,用于在图片上叠加一些信息或标识。本文将介绍如何使用OpenCV库在图片上添加水印,并通过详细的代码注释来解释每一步的操作。 2. 代码示例 以下是一个使用OpenCV库的简单代码示例&…...

Milvus数据库介绍
参考:https://www.xjx100.cn/news/1726910.html?actiononClick Milvus 基于FAISS、Annoy、HNSW 等向量搜索库构建,核心是解决稠密向量相似度检索的问题。在向量检索库的基础上,Milvus 支持数据分区分片、数据持久化、增量数据摄取、标量向量…...

notepad++的下载与使用
1.进入官网下载 https://notepad-plus-plus.org/ 点击下载即可 2.选择中文简体 3.建议安装在D盘 其余步骤按照指示就行 4.安装后这几个是必选的 设置完成后就可以写中文了 以此为例 结果为...

论UI的糟糕设计:以百度网盘为例
上面这一排鼠标一经过就会弹出来(不是点才弹出来),然后挡住你的各种操作, 弹出来时你就必须等它消失,卡一下才能操作。 在用户顺畅地操作内容时,经常就卡一下、卡一下、卡一下…… 1、比如鼠标从下到上&am…...

【Spring】三级缓存
目录标题 触发所有未加载的实例a - 开始getBean( doGetBean) - 获取单例beangetSingleton() - 获取单例beancreateBean(doCreateBean) - 创建beancreateBeanInstance - 创建并返回beanaddSingletonFactory -放三级缓存populateBea…...

CVE-2016-3088(ActiveMQ任意文件写入漏洞)
漏洞描述 1、漏洞编号:CVE-2016-3088 2、影响版本:Apache ActiveMQ 5.x~5.13.0 在 Apache ActiveMQ 5.12.x~5.13.x 版本中,默认关闭了 fileserver 这个应用(不过,可以在conf/jetty.xml 中开启);…...
270.【华为OD机试真题】字符串拼接(深度优先搜索(DFS)-JavaPythonC++JS实现)
🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-字符串拼接二.解题思路三.题解代码Python题解代…...

线阵相机参数介绍之轴编码器控制
1.1 功能介绍 编码器是将检测对象的运动与相机拍摄取图相匹配的设备,也即检测对象运动一定距离,相机就拍摄一定行高的图像。 编码器会将检测对象的实际位移转换为固定数量电信号。例如:编码器的精度是2000p/r,该参数的含义是编码器每转一圈输…...

【JavaEE】_HTTP响应
目录 1. 首行 2. 报头header 3.空行 4. 正文body 1. 首行 响应首行:版本号状态码状态码描述; HTTP状态码描述了这次响应的结果(比如成功、失败,以及失败原因等); 1. HTTP状态码有: &#…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...