当前位置: 首页 > news >正文

挑战杯 基于LSTM的天气预测 - 时间序列预测

0 前言

🔥 优质竞赛项目系列,今天要分享的是

机器学习大数据分析项目

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 数据集介绍


df = pd.read_csv(‘/home/kesci/input/jena1246/jena_climate_2009_2016.csv’)
df.head()

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。


def univariate_data(dataset, start_index, end_index, history_size, target_size):
data = []
labels = []

    start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i)# Reshape data from (history`1_size,) to (history_size, 1)data.append(np.reshape(dataset[indices], (history_size, 1)))labels.append(dataset[i+target_size])return np.array(data), np.array(labels)

2 开始分析

2.1 单变量分析

首先,使用一个特征(温度)训练模型,并在使用该模型做预测。

2.1.1 温度变量

从数据集中提取温度


uni_data = df[‘T (degC)’]
uni_data.index = df[‘Date Time’]
uni_data.head()

观察数据随时间变化的情况

在这里插入图片描述
进行标准化


#标准化
uni_train_mean = uni_data[:TRAIN_SPLIT].mean()
uni_train_std = uni_data[:TRAIN_SPLIT].std()

uni_data = (uni_data-uni_train_mean)/uni_train_std
#写函数来划分特征和标签
univariate_past_history = 20
univariate_future_target = 0
x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT, # 起止区间univariate_past_history,univariate_future_target)
x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None,univariate_past_history,univariate_future_target)

可见第一个样本的特征为前20个时间点的温度,其标签为第21个时间点的温度。根据同样的规律,第二个样本的特征为第2个时间点的温度值到第21个时间点的温度值,其标签为第22个时间点的温度……

在这里插入图片描述

在这里插入图片描述

2.2 将特征和标签切片


BATCH_SIZE = 256
BUFFER_SIZE = 10000

train_univariate = tf.data.Dataset.from_tensor_slices((x_train_uni, y_train_uni))
train_univariate = train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()val_univariate = tf.data.Dataset.from_tensor_slices((x_val_uni, y_val_uni))
val_univariate = val_univariate.batch(BATCH_SIZE).repeat()

2.3 建模


simple_lstm_model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(8, input_shape=x_train_uni.shape[-2:]), # input_shape=(20,1) 不包含批处理维度
tf.keras.layers.Dense(1)
])

simple_lstm_model.compile(optimizer='adam', loss='mae')

2.4 训练模型


EVALUATION_INTERVAL = 200
EPOCHS = 10

simple_lstm_model.fit(train_univariate, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_univariate, validation_steps=50)

训练过程

在这里插入图片描述

训练结果 - 温度预测结果
在这里插入图片描述

2.5 多变量分析

在这里,我们用过去的一些压强信息、温度信息以及密度信息来预测未来的一个时间点的温度。也就是说,数据集中应该包括压强信息、温度信息以及密度信息。

2.5.1 压强、温度、密度随时间变化绘图

在这里插入图片描述

2.5.2 将数据集转换为数组类型并标准化


dataset = features.values
data_mean = dataset[:TRAIN_SPLIT].mean(axis=0)
data_std = dataset[:TRAIN_SPLIT].std(axis=0)

dataset = (dataset-data_mean)/data_stddef multivariate_data(dataset, target, start_index, end_index, history_size,target_size, step, single_step=False):data = []labels = []start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i, step) # step表示滑动步长data.append(dataset[indices])if single_step:labels.append(target[i+target_size])else:labels.append(target[i:i+target_size])return np.array(data), np.array(labels)

2.5.3 多变量建模训练训练

single_step_model = tf.keras.models.Sequential()single_step_model.add(tf.keras.layers.LSTM(32,input_shape=x_train_single.shape[-2:]))single_step_model.add(tf.keras.layers.Dense(1))single_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='mae')single_step_history = single_step_model.fit(train_data_single, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_single,validation_steps=50)def plot_train_history(history, title):loss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'b', label='Training loss')plt.plot(epochs, val_loss, 'r', label='Validation loss')plt.title(title)plt.legend()plt.show()plot_train_history(single_step_history,'Single Step Training and validation loss')

在这里插入图片描述
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

挑战杯 基于LSTM的天气预测 - 时间序列预测

0 前言 🔥 优质竞赛项目系列,今天要分享的是 机器学习大数据分析项目 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/po…...

我为什么不喜欢关电脑?

程序员为什么不喜欢关电脑? 你是否注意到,程序员们似乎从不关电脑?别以为他们是电脑上瘾,实则是有他们自己的原因!让我们一起揭秘背后的原因,看看程序员们真正的“英雄”本色! 一、上大学时。 …...

Unity【角色/摄像机移动控制】【1.角色移动】

本文主要总结实现角色移动的解决方案。 1. 创建脚本:PlayerController 2. 创建游戏角色Player,在Player下挂载PlayerController脚本 3. 把Camera挂载到Player的子物体中,调整视角,以实现相机跟随效果 3. PlayerController脚本代码…...

Oracle12cR2之Job定时作业调度器详解

Oracle12cR2之Job定时作业调度器详解 文章目录 Oracle12cR2之Job定时作业调度器详解1.Oracle Job1. 关于Job2. 使用方法 2. Job详细说明1. 查看Job的相关视图2.SYS.DBA_JOBS视图字段详细说明 3. 创建及查看Job1. 创建Job2. 查看运行中的Job 1.Oracle Job 1. 关于Job 在 Oracle…...

python自学...

一、稍微高级一点的。。。 1. 闭包(跟js差不多) 2. 装饰器 就是spring的aop 3. 多线程...

Message Pack 协议详解及应用

文章目录 一、Message Pack是什么二、Message Pack的语法规则三、Message Pack相关链接四、Message Pack应用场景五、MessagePack 兼容性与特点 一、Message Pack是什么 Message Pack是一种高效的二进制序列化格式,用于在不同的应用程序之间进行数据交换。它类似于J…...

智慧社区管理系统:构建未来的生活模式

在这个信息化、智能化的时代,我们期待的不再是简单的居住空间,而是一个集安全、便捷、舒适、环保于一体的智能化社区。为此,我们推出了全新的智慧社区管理系统,旨在将先进的科技力量引入社区管理,为居民提供更优质的生…...

Rocky 8.9 Kubespray v2.24.0 在线部署 kubernetes v1.28.6 集群

文章目录 1. 简介2. 预备条件3. 基础配置3.1 配置hostname3.2 配置互信 4. 配置部署环境4.1 在线安装docker4.2 启动容器 kubespray4.3 编写 inventory.ini4.4 关闭防火墙、swap、selinux4.5 配置内核模块 5. 部署6. 集群检查 1. 简介 kubespray​ 是一个用于部署和管理 Kuber…...

新版AI系统ChatGPT源码支持GPT-4/支持AI绘画去授权

源码获取方式 搜一搜:万能工具箱合集 点击资源库直接进去获取源码即可 如果没看到就是待更新,会陆续更新上 新版AI系统ChatGPT网站源码支持GPT-4/支持AI绘画/Prompt应用/MJ绘画源码/PCH5端/免授权,支持关联上下文,意间绘画模型…...

学习鸿蒙基础(5)

一、honmonyos的page路由界面的路径 新建了一个page,然后删除了。运行模拟器的时候报错了。提示找不到这个界面。原来是在路由界面没有删除这个page。新手刚接触找了半天才找到这个路由。在resources/base/profile/main_pages.json 这个和微信小程序好类似呀。 吐槽&#xf…...

Tuxera NTFS2024最新中文版支持M1/M2/M3苹果全系机型

Tuxera NTFS的传输速度会受到多种因素的影响,包括硬件配置、文件大小、存储设备的性能等。因此,无法给出具体的传输速度数值。 不过,根据一些用户的使用经验和测试数据,Tuxera NTFS的传输速度通常都非常快,能够满足大…...

【Python】OpenCV-图片添加水印处理

图片添加水印处理 1. 引言 图像处理中的水印添加是一种常见的操作,用于在图片上叠加一些信息或标识。本文将介绍如何使用OpenCV库在图片上添加水印,并通过详细的代码注释来解释每一步的操作。 2. 代码示例 以下是一个使用OpenCV库的简单代码示例&…...

Milvus数据库介绍

参考:https://www.xjx100.cn/news/1726910.html?actiononClick Milvus 基于FAISS、Annoy、HNSW 等向量搜索库构建,核心是解决稠密向量相似度检索的问题。在向量检索库的基础上,Milvus 支持数据分区分片、数据持久化、增量数据摄取、标量向量…...

notepad++的下载与使用

1.进入官网下载 https://notepad-plus-plus.org/ 点击下载即可 2.选择中文简体 3.建议安装在D盘 其余步骤按照指示就行 4.安装后这几个是必选的 设置完成后就可以写中文了 以此为例 结果为...

论UI的糟糕设计:以百度网盘为例

上面这一排鼠标一经过就会弹出来(不是点才弹出来),然后挡住你的各种操作, 弹出来时你就必须等它消失,卡一下才能操作。 在用户顺畅地操作内容时,经常就卡一下、卡一下、卡一下…… 1、比如鼠标从下到上&am…...

【Spring】三级缓存

目录标题 触发所有未加载的实例a - 开始getBean( doGetBean) - 获取单例beangetSingleton() - 获取单例beancreateBean(doCreateBean) - 创建beancreateBeanInstance - 创建并返回beanaddSingletonFactory -放三级缓存populateBea…...

CVE-2016-3088(ActiveMQ任意文件写入漏洞)

漏洞描述 1、漏洞编号:CVE-2016-3088 2、影响版本:Apache ActiveMQ 5.x~5.13.0 在 Apache ActiveMQ 5.12.x~5.13.x 版本中,默认关闭了 fileserver 这个应用(不过,可以在conf/jetty.xml 中开启);…...

270.【华为OD机试真题】字符串拼接(深度优先搜索(DFS)-JavaPythonC++JS实现)

🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-字符串拼接二.解题思路三.题解代码Python题解代…...

线阵相机参数介绍之轴编码器控制

1.1 功能介绍 编码器是将检测对象的运动与相机拍摄取图相匹配的设备,也即检测对象运动一定距离,相机就拍摄一定行高的图像。 编码器会将检测对象的实际位移转换为固定数量电信号。例如:编码器的精度是2000p/r,该参数的含义是编码器每转一圈输…...

【JavaEE】_HTTP响应

目录 1. 首行 2. 报头header 3.空行 4. 正文body 1. 首行 响应首行:版本号状态码状态码描述; HTTP状态码描述了这次响应的结果(比如成功、失败,以及失败原因等); 1. HTTP状态码有: &#…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...

Java编程之桥接模式

定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...