【广度优先搜索】【网格】【割点】【 推荐】1263. 推箱子
作者推荐
视频算法专题
涉及知识点
广度优先搜索 网格 割点 并集查找
LeetCode:1263. 推箱子
「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。
游戏地图用大小为 m x n 的网格 grid 表示,其中每个元素可以是墙、地板或者是箱子。
现在你将作为玩家参与游戏,按规则将箱子 ‘B’ 移动到目标位置 ‘T’ :
玩家用字符 ‘S’ 表示,只要他在地板上,就可以在网格中向上、下、左、右四个方向移动。
地板用字符 ‘.’ 表示,意味着可以自由行走。
墙用字符 ‘#’ 表示,意味着障碍物,不能通行。
箱子仅有一个,用字符 ‘B’ 表示。相应地,网格上有一个目标位置 ‘T’。
玩家需要站在箱子旁边,然后沿着箱子的方向进行移动,此时箱子会被移动到相邻的地板单元格。记作一次「推动」。
玩家无法越过箱子。
返回将箱子推到目标位置的最小 推动 次数,如果无法做到,请返回 -1。
示例 1:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“.”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:3
解释:我们只需要返回推箱子的次数。
示例 2:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“#”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:-1
示例 3:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“.”,“.”,“#”,“#”],
[“#”,“.”,“#”,“B”,“.”,“#”],
[“#”,“.”,“.”,“.”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:5
解释:向下、向左、向左、向上再向上。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 20
grid 仅包含字符 ‘.’, ‘#’, ‘S’ , ‘T’, 以及 ‘B’。
grid 中 ‘S’, ‘B’ 和 ‘T’ 各只能出现一个。
01广度优先搜索
状态:箱子所在行列,人所在行列
人试图向上下左右移动。以左移为例。
{ 如果人可以左移,人左移,加到队首 箱子不在左边 如果人和箱子都可以左移,人箱子左移,加到队尾 箱子在人左边 \begin{cases} 如果人可以左移,人左移,加到队首 & 箱子不在左边\\ 如果人和箱子都可以左移,人箱子左移,加到队尾 &箱子在人左边\\ \end{cases} {如果人可以左移,人左移,加到队首如果人和箱子都可以左移,人箱子左移,加到队尾箱子不在左边箱子在人左边
妙在无需考虑: 箱子对人的影响。
代码
核心代码
class CBFS
{
public:CBFS(int iStatuCount, int iInit = -1):m_iStatuCount(iStatuCount),m_iInit(iInit){m_res.assign(iStatuCount, iInit);}bool Peek(int& statu){if (m_que.empty()){return false;}statu = m_que.front();m_que.pop_front();return true;}void PushBack(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_back(statu);}void PushFront(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_front(statu);}int Get(int statu){return m_res[statu];}
private:const int m_iStatuCount;const int m_iInit;deque<int> m_que;vector<int> m_res;
};class CBFS2 : protected CBFS
{
public:CBFS2(int iStatuCount1,int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit ), m_iStatuCount2(iStatuCount2){}bool Peek(int& statu1,int& statu2 ){int statu;if (!CBFS::Peek(statu)){return false;}statu1 = statu / m_iStatuCount2;statu2 = statu % m_iStatuCount2;return true;}void PushBack(int statu1,int statu2, int value){CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);}void PushFront(int statu1, int statu2, int value){CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);}int Get(int statu1, int statu2){return CBFS::Get(statu1 * m_iStatuCount2 + statu2);}
private:const int m_iStatuCount2;
};class CBFS3 : protected CBFS2
{
public:CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3){}bool Peek(int& statu1, int& statu2,int& statu3 ){int statu23;if (!CBFS2::Peek(statu1,statu23)){return false;}statu2 = statu23 / m_iStatuCount3;statu3 = statu23 % m_iStatuCount3;return true;}void PushBack(int statu1, int statu2,int statu3, int value){CBFS2::PushBack(statu1 , statu2*m_iStatuCount3+statu3, value);}void PushFront(int statu1, int statu2, int statu3, int value){CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);}int Get(int statu1, int statu2, int statu3){return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);}const int m_iStatuCount3;
};class CBFS4 : protected CBFS3
{
public:CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4){}bool Peek(int& statu1, int& statu2, int& statu3,int& statu4){int statu34;if (!CBFS3::Peek(statu1, statu2,statu34)){return false;}statu3 = statu34 / m_iStatuCount4;statu4 = statu34 % m_iStatuCount4;return true;}void PushBack(int statu1, int statu2, int statu3,int statu4, int value){CBFS3::PushBack(statu1, statu2 , statu3* m_iStatuCount4+ statu4, value);}void PushFront(int statu1, int statu2, int statu3, int statu4, int value){CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);}int Get(int statu1, int statu2, int statu3, int statu4){return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);}const int m_iStatuCount4;
};template<class T>
class CEnumGrid
{
public:static void EnumGrid(const vector<vector<T>>& grid,std::function<void(int,int,T)> call ){for (int r = 0; r < grid.size(); r++){for (int c = 0; c < grid.front().size(); c++){call(r, c, grid[r][c]);}}}
};
class Solution {
public:int minPushBox(vector<vector<char>>& grid) {m_r = grid.size();m_c = grid[0].size();int move[4][2] = { {1,0},{-1,0},{0,1},{0,-1} };auto CanMove = [&grid](int r, int c){if ((r < 0) || (r >= grid.size())){return false;}if ((c < 0) || (c >= grid[0].size())){return false;}return '#' != grid[r][c];};int sr, sc, br, bc,tr,tc;CEnumGrid<char>::EnumGrid(grid, [&](int r, int c, char ch){if ('B' == ch){br = r;bc = c;}if ('S' == ch){sr = r;sc = c;}if ('T' == ch){tr = r;tc = c;}});CBFS4 bfs(m_r, m_c, m_r, m_c);bfs.PushBack(sr, sc, br, bc, 0);int r1, c1, r2, c2;while (bfs.Peek(r1, c1, r2, c2)){const int dis = bfs.Get(r1, c1, r2, c2);if ((r2 == tr) && (c2 == tc)){return dis;}for (const auto& [mr,mc] : move){auto r3 = r1 + mr;auto c3 = c1 + mc;if (!CanMove(r3, c3)){continue;}if ((r3 == r2) && (c3 == c2)){//必须移动箱子auto r4 = r3 + mr;auto c4 = c3 + mc;if (!CanMove(r4, c4)){continue;}bfs.PushBack(r3, c3, r4, c4, dis + 1);}else{bfs.PushFront(r3, c3, r2, c2, dis );}}}return -1;}int m_r, m_c;
};
测试用例
template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<char>> grid;{Solution sln;grid = { {'#','#','#','#','#','#'},{'#','T','#','#','#','#'},{'#','.','.','B','.','#'},{'#','.','#','#','.','#'},{'#','.','.','.','S','#'},{'#','#','#','#','#','#'} };auto res = sln.minPushBox(grid);Assert(3, res);}{Solution sln;grid = { {'#','#','#','#','#','#'},{'#','T','.','.','#','#'},{'#','.','#','B','.','#'},{'#','.','.','.','.','#'},{'#','.','.','.','S','#'},{'#','#','#','#','#','#'} };auto res = sln.minPushBox(grid);Assert(5, res);}
}
想法而已,过于复杂:割点、并集查找
状态:箱子所在行列,人所在方位(上右下左) 。
箱子右移的条件:
人能移到箱子左边,箱子能右移(右边没出界,不是墙)
人可能被箱子阻拦:
{ 如果没箱子,人无法到达 无法到达。 e l s e 箱子不是割点 能到达 e l s e 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 能到达。 o t h e r 不能到达。 \begin{cases} 如果没箱子,人无法到达& 无法到达。\\ else 箱子不是割点 & 能到达 \\ else 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 & 能到达。\\ other & 不能到达。\\ \end{cases} ⎩ ⎨ ⎧如果没箱子,人无法到达else箱子不是割点else是割点,源点和目标点到时间戳都大于(小于)割点时间戳other无法到达。能到达能到达。不能到达。
写了下代码,太复杂了。
错误原因:源点和目标点到时间戳都大于(小于)割点时间戳则能到达是错误的。因为:割点可能被多次访问,所以需要记录割点所有的时间戳,在同一个时间段的可以访问。但这要修改割点函数。抱着一根筋精神,改进了割点函数。
代码
class CUnionFind
{
public:CUnionFind(int iSize) :m_vNodeToRegion(iSize){for (int i = 0; i < iSize; i++){m_vNodeToRegion[i] = i;}m_iConnetRegionCount = iSize;} CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size()){for (int i = 0; i < vNeiBo.size(); i++) {for (const auto& n : vNeiBo[i]) {Union(i, n);}}}int GetConnectRegionIndex(int iNode){int& iConnectNO = m_vNodeToRegion[iNode];if (iNode == iConnectNO){return iNode;}return iConnectNO = GetConnectRegionIndex(iConnectNO);}void Union(int iNode1, int iNode2){const int iConnectNO1 = GetConnectRegionIndex(iNode1);const int iConnectNO2 = GetConnectRegionIndex(iNode2);if (iConnectNO1 == iConnectNO2){return;}m_iConnetRegionCount--;if (iConnectNO1 > iConnectNO2){UnionConnect(iConnectNO1, iConnectNO2);}else{UnionConnect(iConnectNO2, iConnectNO1);}}bool IsConnect(int iNode1, int iNode2){return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);}int GetConnetRegionCount()const{return m_iConnetRegionCount;}vector<int> GetNodeCountOfRegion()//各联通区域的节点数量{const int iNodeSize = m_vNodeToRegion.size();vector<int> vRet(iNodeSize);for (int i = 0; i < iNodeSize; i++){vRet[GetConnectRegionIndex(i)]++;}return vRet;}std::unordered_map<int, vector<int>> GetNodeOfRegion(){std::unordered_map<int, vector<int>> ret;const int iNodeSize = m_vNodeToRegion.size();for (int i = 0; i < iNodeSize; i++){ret[GetConnectRegionIndex(i)].emplace_back(i);}return ret;}
private:void UnionConnect(int iFrom, int iTo){m_vNodeToRegion[iFrom] = iTo;}vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引int m_iConnetRegionCount;
};class CUnionFindMST
{
public:CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize){}void AddEdge(const int iNode1, const int iNode2, int iWeight){if (m_uf.IsConnect(iNode1, iNode2)){return;}m_iMST += iWeight;m_uf.Union(iNode1, iNode2);}void AddEdge(const vector<int>& v){AddEdge(v[0], v[1], v[2]);}int MST(){if (m_uf.GetConnetRegionCount() > 1){return -1;}return m_iMST;}
private:int m_iMST = 0;CUnionFind m_uf;
};class CUnionFindDirect
{
public:CUnionFindDirect(int iSize){m_vRoot.resize(iSize);iota(m_vRoot.begin(), m_vRoot.end(), 0);}void Connect(bool& bConflic, bool& bCyc, int iFrom, int iTo){bConflic = bCyc = false;if (iFrom != m_vRoot[iFrom]){bConflic = true;}Fresh(iTo);if (m_vRoot[iTo] == iFrom){bCyc = true;}if (bConflic || bCyc){return;}m_vRoot[iFrom] = m_vRoot[iTo];}int GetMaxDest(int iFrom){Fresh(iFrom);return m_vRoot[iFrom];}
private:int Fresh(int iNode){if (m_vRoot[iNode] == iNode){return iNode;}return m_vRoot[iNode] = Fresh(m_vRoot[iNode]);}vector<int> m_vRoot;
};class CNearestMST
{
public:CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize){}void Init(const vector<vector<int>>& edges){for (const auto& v : edges){Add(v);}}void Add(const vector<int>& v){m_vNeiTable[v[0]].emplace_back(v[1], v[2]);m_vNeiTable[v[1]].emplace_back(v[0], v[2]);}int MST(int start){int next = start;while ((next = AddNode(next)) >= 0);return m_iMST;}int MST(int iNode1, int iNode2, int iWeight){m_bDo[iNode1] = true;for (const auto& it : m_vNeiTable[iNode1]){if (m_bDo[it.first]){continue;}m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);}m_iMST = iWeight;int next = iNode2;while ((next = AddNode(next)) >= 0);return m_iMST;}private:int AddNode(int iCur){m_bDo[iCur] = true;for (const auto& it : m_vNeiTable[iCur]){if (m_bDo[it.first]){continue;}m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);}int iMinIndex = -1;for (int i = 0; i < m_vDis.size(); i++){if (m_bDo[i]){continue;}if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex])){iMinIndex = i;}}if (-1 != iMinIndex){if (INT_MAX == m_vDis[iMinIndex]){m_iMST = -1;return -1;}m_iMST += m_vDis[iMinIndex];}return iMinIndex;}vector<bool> m_bDo;vector<long long> m_vDis;vector < vector<std::pair<int, int>>> m_vNeiTable;long long m_iMST = 0;
};class CBFSDis
{
public:CBFSDis(vector<vector<int>>& vNeiB, vector<int> start){m_vDis.assign(vNeiB.size(), m_iNotMayDis);queue<int> que;for (const auto& n : start){m_vDis[n] = 0;que.emplace(n);}while (que.size()){const int cur = que.front();que.pop();for (const auto next : vNeiB[cur]){if (m_iNotMayDis != m_vDis[next]){continue;}m_vDis[next] = m_vDis[cur] + 1;que.emplace(next);}}}
public:const int m_iNotMayDis = 1e9;vector<int> m_vDis;
};class C01BFSDis
{
public:C01BFSDis(vector<vector<int>>& vNeiB0, vector<vector<int>>& vNeiB1, int s){m_vDis.assign(vNeiB0.size(), -1);std::deque<std::pair<int, int>> que;que.emplace_back(s, 0);while (que.size()){auto it = que.front();const int cur = it.first;const int dis = it.second;que.pop_front();if (-1 != m_vDis[cur]){continue;}m_vDis[cur] = it.second;for (const auto next : vNeiB0[cur]){if (-1 != m_vDis[next]){continue;}que.emplace_front(next, dis);}for (const auto next : vNeiB1[cur]){if (-1 != m_vDis[next]){continue;}que.emplace_back(next, dis + 1);}}}
public:vector<int> m_vDis;
};
//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class CHeapDis
{
public:CHeapDis(int n){m_vDis.assign(n, -1);}void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB){std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;minHeap.emplace(0, start);while (minHeap.size()){const long long llDist = minHeap.top().first;const int iCur = minHeap.top().second;minHeap.pop();if (-1 != m_vDis[iCur]){continue;}m_vDis[iCur] = llDist;for (const auto& it : vNeiB[iCur]){minHeap.emplace(llDist + it.second, it.first);}}}vector<long long> m_vDis;
};//朴素迪杰斯特拉算法
class CN2Dis
{
public:CN2Dis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre){}void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB){m_vDis.assign(m_iSize, -1);m_vPre.assign(m_iSize, -1);vector<bool> vDo(m_iSize);//点是否已处理auto AddNode = [&](int iNode){//const int iPreNode = m_vPre[iNode];long long llPreDis = m_vDis[iNode];vDo[iNode] = true;for (const auto& it : vNeiB[iNode]){if (vDo[it.first]){continue;}if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first])){m_vDis[it.first] = it.second + llPreDis;m_vPre[it.first] = iNode;}}long long llMinDis = LLONG_MAX;int iMinIndex = -1;for (int i = 0; i < m_vDis.size(); i++){if (vDo[i]){continue;}if (-1 == m_vDis[i]){continue;}if (m_vDis[i] < llMinDis){iMinIndex = i;llMinDis = m_vDis[i];}}return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;};int next = start;m_vDis[start] = 0;while (-1 != (next = AddNode(next)));}void Cal(int start, const vector<vector<int>>& mat){m_vDis.assign(m_iSize, LLONG_MAX);m_vPre.assign(m_iSize, -1);vector<bool> vDo(m_iSize);//点是否已处理auto AddNode = [&](int iNode){long long llPreDis = m_vDis[iNode];vDo[iNode] = true;for (int i = 0; i < m_iSize; i++){if (vDo[i]){continue;}const long long llCurDis = mat[iNode][i];if (llCurDis <= 0){continue;}m_vDis[i] = min(m_vDis[i], m_vDis[iNode] + llCurDis);}long long llMinDis = LLONG_MAX;int iMinIndex = -1;for (int i = 0; i < m_iSize; i++){if (vDo[i]){continue;}if (m_vDis[i] < llMinDis){iMinIndex = i;llMinDis = m_vDis[i];}}if (LLONG_MAX == llMinDis){return -1;}m_vPre[iMinIndex] = iNode;return iMinIndex;};int next = start;m_vDis[start] = 0;while (-1 != (next = AddNode(next)));}const vector<long long>& DIS;const vector<int>& PRE;
private:const int m_iSize;vector<long long> m_vDis;//各点到起点的最短距离vector<int> m_vPre;//最短路径的前一点
};//多源码路径
template<class T, T INF = 1000 * 1000 * 1000>
class CFloyd
{
public:CFloyd(const vector<vector<T>>& mat){m_vMat = mat;const int n = mat.size();for (int i = 0; i < n; i++){//通过i中转for (int i1 = 0; i1 < n; i1++){for (int i2 = 0; i2 < n; i2++){//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离}}}};vector<vector<T>> m_vMat;
};class CParentToNeiBo
{
public:CParentToNeiBo(const vector<int>& parents){m_vNeiBo.resize(parents.size());for (int i = 0; i < parents.size(); i++){if (-1 == parents[i]){m_root = i;}else{m_vNeiBo[parents[i]].emplace_back(i);}}}vector<vector<int>> m_vNeiBo;int m_root = -1;
};class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class CNeiBo3
{
public:CNeiBo3(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0){m_vNeiB.resize(n);AddEdges(edges, bDirect, iBase);}CNeiBo3(int n){m_vNeiB.resize(n);}void AddEdges(vector<vector<int>>& edges, bool bDirect, int iBase = 0){for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);}}}vector<vector<std::pair<int, int>>> m_vNeiB;
};template<class T, T INF = 1000 * 1000 * 1000>
class CNeiBoToMat
{
public:CNeiBoToMat(int n, const vector<vector<int>>& edges, bool bDirect = false, bool b1Base = false){m_vMat.assign(n, vector<int>(n, INF));for (int i = 0; i < n; i++){m_vMat[i][i] = 0;}for (const auto& v : edges){m_vMat[v[0] - b1Base][v[1] - b1Base] = v[2];if (!bDirect){m_vMat[v[1] - b1Base][v[0] - b1Base] = v[2];}}}vector<vector<int>> m_vMat;
};
class CCutEdge
{
public:CCutEdge(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vTime.assign(m_iSize, -1);m_vCutEdges.resize(m_iSize);for (int i = 0; i < m_iSize; i++){if (-1 != m_vTime[i]){continue;}m_iRegionCount++;dfs(i, -1, vNeiB);}}bool IsCut(int node1, int node2){return m_vCutEdges[node1].count(node2);}bool IsCut(int node){return m_vCutEdges[node].size();}int RegionCount()const{return m_iRegionCount;}
protected:int dfs(int cur, int parent, const vector<vector<int>>& vNeiB){auto& curTime = m_vTime[cur];curTime = m_iTime++;int iRet = curTime;for (const auto& next : vNeiB[cur]){if (next == parent){continue;}if (-1 != m_vTime[next]){iRet = min(iRet, m_vTime[next]);continue;}int iNextTime = dfs(next, cur, vNeiB);if (iNextTime > curTime){m_vCutEdges[cur].emplace(next);}iRet = min(iRet, iNextTime);}return iRet;}vector<int> m_vTime;int m_iTime = 0;int m_iRegionCount = 0;vector<std::unordered_set<int>> m_vCutEdges;const int m_iSize;
};//割点
class CCutPoint
{
public:CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vTime.assign(m_iSize, -1);m_vVisitMin.assign(m_iSize, -1);for (int i = 0; i < m_iSize; i++){if (-1 != m_vTime[i]){continue;}m_iRegionCount++;dfs(i, -1, vNeiB);}}int RegionCount()const{return m_iRegionCount;}const vector<int>& CutPoints()const{return m_vCutPoints;}const vector<int>& Tinme()const { return m_vTime; }
protected:void dfs(int cur, int parent, const vector<vector<int>>& vNeiB){auto& curTime = m_vTime[cur];auto& visitMin = m_vVisitMin[cur];curTime = m_iTime++;visitMin = curTime;int iMax = -1;int iChildNum = 0;for (const auto& next : vNeiB[cur]){if (next == parent){continue;}if (-1 != m_vTime[next]){visitMin = min(visitMin, m_vTime[next]);continue;}iChildNum++;dfs(next, cur, vNeiB);visitMin = min(visitMin, m_vVisitMin[next]);iMax = max(iMax, m_vVisitMin[next]);}if (-1 == parent){if (iChildNum >= 2){m_vCutPoints.emplace_back(cur);}}else{if (iMax >= curTime){m_vCutPoints.emplace_back(cur);}}}vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理vector<int> m_vVisitMin;// int m_iTime = 0;int m_iRegionCount = 0;vector<int> m_vCutPoints;const int m_iSize;
};class CTopSort
{
public://vBackNeiBo[1] = {2} 表示 1完成后,才能完成2template<class T >void Init(vector<T>& vPreToNext){m_c = vPreToNext.size();vector<int> vInDeg(m_c);for (int cur = 0; cur < m_c; cur++){for (const auto& next : vPreToNext[cur]){vInDeg[next]++;}}queue<int> que;for (int i = 0; i < m_c; i++){if (0 == vInDeg[i]){que.emplace(i);m_vLeaf.emplace_back(i);OnDo(-1, i);}}while (que.size()){const int cur = que.front();que.pop();for (const auto& next : vPreToNext[cur]){vInDeg[next]--;if (0 == vInDeg[next]){que.emplace(next);OnDo(cur, next);}}};}virtual void OnDo(int pre, int cur) = 0;int m_c;vector<int> m_vLeaf;
};struct CVec
{int r;int c;
};
struct CPos
{ int r = 0, c = 0;int ToMask()const { return s_MaxC * r + c; };bool operator==(const CPos& o)const{return (r == o.r) && (c == o.c);}CPos operator+(const CVec& v)const{return { r + v.r, c + v.c };}CPos operator-(const CVec& v)const{return{ r - v.r, c - v.c };}CVec operator-(const CPos& o)const{return {r - o.r,c- o.c};}inline static int s_MaxC = 10'000;
};class CRange
{
public:CRange(int rCount, int cCount, std::function<bool(int, int)> funVilidCur):m_r(rCount),m_c(cCount), m_funVilidCur(funVilidCur){}bool Vilid(CPos pos)const{return (pos.r >= 0) && (pos.r < m_r) && (pos.c >= 0) && (pos.c < m_c) && m_funVilidCur(pos.r, pos.c);}const int m_r, m_c;
protected:std::function<bool(int, int)> m_funVilidCur;
};
class CGridToNeiBo
{
public:static vector<vector<int>> ToNeiBo(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext){vector<vector<int>> vNeiBo(rCount * cCount);auto Move = [&](int preR, int preC, int r, int c){if ((r < 0) || (r >= rCount)){return;}if ((c < 0) || (c >= cCount)){return;}if (funVilidCur(preR, preC) && funVilidNext(r, c)){vNeiBo[cCount*preR+preC].emplace_back(r*cCount+ c);}};for (int r = 0; r < rCount; r++){for (int c = 0; c < cCount; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}return vNeiBo;}
};template<class T = int>
class CEnumGrid
{
public: static void EnumGrid(vector<vector<T>>& grid, std::function<void(int, int, T&)> call){for (int r = 0; r < grid.size(); r++){for (int c = 0; c < grid.front().size(); c++){call(r, c, grid[r][c]);}}}static void EnumPos(vector<vector<T>>& grid, vector<tuple<T, CPos&>> vRes){EnumGrid(grid, [&vRes](int curR, int curC, T& curV){for (auto& [value, pos] : vRes){if (curV == value){pos = { curR,curC };}}});}inline static const CVec s_Move4[4] = { {1,0},{0,1},{-1,0},{0,-1} };//上右下左enum {UP=0,RIGHT,DOWN,LEFT};
};class CEnumGridEdge
{
public:CEnumGridEdge(int r, int c, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext) :m_r(r), m_c(c){m_funVilidCur = funVilidCur;m_funVilidNext = funVilidNext;m_vNext.assign(m_r, vector < vector<pair<int, int>>>(m_c));Init();}vector<vector<int>> BFS(vector<pair<int, int>> start, const int endr = -1, const int endc = -1){vector<vector<int>> vDis(m_r, vector<int>(m_c, -1));queue<pair<int, int>> que;for (const auto& [r, c] : start){vDis[r][c] = 0;que.emplace(make_pair(r, c));}while (que.size()){const auto [r, c] = que.front();que.pop();for (const auto [nr, nc] : m_vNext[r][c]){if (-1 != vDis[nr][nc]){continue;}vDis[nr][nc] = vDis[r][c] + 1;if ((endr == nr) && (endc == nc)){break;}que.emplace(make_pair(nr, nc));}}return vDis;}const int m_r, m_c;vector < vector < vector<pair<int, int>>>> m_vNext;
protected:void Init(){for (int r = 0; r < m_r; r++){for (int c = 0; c < m_c; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}}void Move(int preR, int preC, int r, int c){if ((r < 0) || (r >= m_r)){return;}if ((c < 0) || (c >= m_c)){return;}if (m_funVilidCur(preR, preC) && m_funVilidNext(r, c)){m_vNext[preR][preC].emplace_back(r, c);}};std::function<bool(int, int)> m_funVilidCur, m_funVilidNext;
};class CBFS
{
public:CBFS(int iStatuCount, int iInit = -1) :m_iStatuCount(iStatuCount), m_iInit(iInit){m_res.assign(iStatuCount, iInit);}bool Peek(int& statu){if (m_que.empty()){return false;}statu = m_que.front();m_que.pop_front();return true;}void PushBack(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_back(statu);}void PushFront(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_front(statu);}int Get(int statu){return m_res[statu];}
private:const int m_iStatuCount;const int m_iInit;deque<int> m_que;vector<int> m_res;
};class CBFS2 : protected CBFS
{
public:CBFS2(int iStatuCount1, int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit), m_iStatuCount2(iStatuCount2){}bool Peek(int& statu1, int& statu2){int statu;if (!CBFS::Peek(statu)){return false;}statu1 = statu / m_iStatuCount2;statu2 = statu % m_iStatuCount2;return true;}void PushBack(int statu1, int statu2, int value){CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);}void PushFront(int statu1, int statu2, int value){CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);}int Get(int statu1, int statu2){return CBFS::Get(statu1 * m_iStatuCount2 + statu2);}
private:const int m_iStatuCount2;
};class CBFS3 : protected CBFS2
{
public:CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3){}bool Peek(int& statu1, int& statu2, int& statu3){int statu23;if (!CBFS2::Peek(statu1, statu23)){return false;}statu2 = statu23 / m_iStatuCount3;statu3 = statu23 % m_iStatuCount3;return true;}void PushBack(int statu1, int statu2, int statu3, int value){CBFS2::PushBack(statu1, statu2 * m_iStatuCount3 + statu3, value);}void PushFront(int statu1, int statu2, int statu3, int value){CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);}int Get(int statu1, int statu2, int statu3){return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);}const int m_iStatuCount3;
};class CBFS4 : protected CBFS3
{
public:CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4){}bool Peek(int& statu1, int& statu2, int& statu3, int& statu4){int statu34;if (!CBFS3::Peek(statu1, statu2, statu34)){return false;}statu3 = statu34 / m_iStatuCount4;statu4 = statu34 % m_iStatuCount4;return true;}void PushBack(int statu1, int statu2, int statu3, int statu4, int value){CBFS3::PushBack(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);}void PushFront(int statu1, int statu2, int statu3, int statu4, int value){CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);}int Get(int statu1, int statu2, int statu3, int statu4){return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);}const int m_iStatuCount4;
};class CCutPointEx
{
public:CCutPointEx(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vTime.assign(m_iSize, -1); m_vCutRegion.resize(m_iSize);m_vNodeToRegion.assign(m_iSize,-1);m_vCut.assign(m_iSize, false);for (int i = 0; i < m_iSize; i++){if (-1 != m_vTime[i]){continue;}dfs(i, -1, vNeiB);m_iRegionCount++;}}bool Visit(int src, int dest, int iCut){if (m_vNodeToRegion[src] != m_vNodeToRegion[dest]){return false;//不在一个连通区域}if (!m_vCut[iCut]){return true;}const int r1 = GetCutRegion(iCut,src);const int r2 = GetCutRegion(iCut, dest);return r1 == r2;}
protected:int dfs(int cur, int parent, const vector<vector<int>>& vNeiB){ auto& curTime = m_vTime[cur]; m_vNodeToRegion[cur] = m_iRegionCount;curTime = m_iTime++; int iCutChild=0;int iMinTime = curTime;for (const auto& next : vNeiB[cur]){if (next == parent){continue;}if (-1 != m_vTime[next]){iMinTime = min(iMinTime, m_vTime[next]);continue;} int iChildBeginTime = m_iTime;const int iChildMinTime = dfs(next, cur, vNeiB);iMinTime = min(iMinTime, iChildMinTime);if (iChildMinTime >= curTime){iCutChild++;m_vCutRegion[cur].push_back({ iChildBeginTime,m_iTime });};}m_vCut[cur] = (iCutChild + (-1 != parent)) >= 2;return iMinTime;} int GetCutRegion(int iCut, int iNode)const {const auto& v = m_vCutRegion[iCut];auto it = std::upper_bound(v.begin(), v.end(), m_vTime[iNode],[](int time, const std::pair<int, int>& pr) {return time < pr.first; });if (v.begin() == it){return v.size();}--it;return (it->second > m_vTime[iNode]) ? (it - v.begin()) : v.size();}int m_iTime = 0; const int m_iSize;int m_iRegionCount=0;vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理vector<bool> m_vCut;vector<int> m_vNodeToRegion;vector<vector<pair<int,int>>> m_vCutRegion;
};class Solution {
public:int minPushBox(vector<vector<char>>& grid) { auto Vilid = [&](int r, int c) {return '#' != grid[r][c]; };CRange range(grid.size(), grid.front().size(), Vilid); CPos::s_MaxC = range.m_c; auto neiBo = CGridToNeiBo::ToNeiBo(range.m_r, range.m_c, Vilid, Vilid); CCutPointEx cutPoint(neiBo);auto Visit = [&](CPos s, CPos d, CPos b){ return range.Vilid(d) && cutPoint.Visit(s.ToMask(),d.ToMask(),b.ToMask());};CBFS3 bfs(range.m_r, range.m_c, 4);CPos sInit,tInit,bInit;CEnumGrid<char>::EnumPos(grid, { { 'B',bInit },{'T',tInit},{'S',sInit} });auto MovePeo = [&](CPos peo, CPos bCur, int iCurDis) {for (int i = 0; i < 4; i++) {if (Visit(peo, bCur + CEnumGrid<>::s_Move4[i], bCur)) {bfs.PushFront(bCur.r, bCur.c, i, iCurDis);}}};MovePeo(sInit, bInit, 0);int br1, bc1, pd;while (bfs.Peek(br1, bc1, pd)) {CPos bCur = { br1,bc1 };CPos peo = bCur + CEnumGrid<>::s_Move4[pd];const int CurDis = bfs.Get(br1, bc1, pd);if (bCur == tInit ) {return CurDis; } MovePeo(peo, bCur, CurDis);auto dest = bCur - CEnumGrid<>::s_Move4[pd];if (range.Vilid(dest)){bfs.PushBack(dest.r, dest.c, pd, CurDis + 1);}} return -1;}
};
2023年4月
class CGridCanVisit
{
public:
CGridCanVisit(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())
{
m_vDis.assign(m_r, vector(m_c,INT_MAX/2));
Dist(r, c);
}
bool Vilid(const int r,const int c )
{
if ((r < 0) || (r >= m_r))
{
return false;
}
if ((c < 0) || (c >= m_c))
{
return false;
}
return true;
}
const vector<vector>& Dis()const
{
return m_vDis;
}
const vector<vector>& m_bCanVisit;
private:
//INT_MAX/2 表示无法到达
void Dist(int r, int c)
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
vector<vector> vHasDo(m_r, vector(m_c));
std::queue<std::pair<int, int>> que;
auto Add = [&](const int& r, const int& c, const int& iDis)
{
if (!Vilid(r, c))
{
return;
}
if (vHasDo[r][c])
{
return;
}
if (!m_bCanVisit[r][c])
{
vHasDo[r][c] = true;
return;
}
if (iDis >= m_vDis[r][c])
{
return;
}
que.emplace(r, c);
m_vDis[r][c] = iDis;
vHasDo[r][c] = true;
};
Add(r, c, 0);
while (que.size())
{
const int r = que.front().first;
const int c = que.front().second;
que.pop();
const int iDis = m_vDis[r][c];
Add(r + 1, c, iDis + 1);
Add(r - 1, c, iDis + 1);
Add(r, c + 1, iDis + 1);
Add(r, c - 1, iDis + 1);
}
}
vector<vector> m_vDis;
const int m_r;
const int m_c;
};
class Solution {
public:
int minPushBox(vector<vector>& grid) {
std::pair<int, int> pB, pS, pT;
m_r = grid.size();
m_c = grid[0].size();
vector<vector> vCanVisit(m_r, vector(m_c));
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
const char ch = grid[r][c];
if (‘S’ == ch)
{
pS = std::make_pair(r, c);
}
else if (‘T’ == ch)
{
pT = std::make_pair(r, c);
}
else if (‘B’ == ch)
{
pB = std::make_pair(r, c);
}
vCanVisit[r][c] = ‘#’ != ch;
}
}
std::unordered_set vHasDo;
std::queue<std::tuple<int, int, int, int>> que;
auto Add = [&](int r, int c, int iSR, int iSC)
{
const int iMask = r * 100 * 100 * 100 + c * 100 * 100 + iSR * 100 + iSC;
if (vHasDo.count(iMask))
{
return;
}
vHasDo.insert(iMask);
que.emplace(r, c, iSR, iSC);
};
auto Move = [&]( CGridCanVisit& gc,int r, int c, int iOldR, int iOldC, int iSR, int iSC)
{
if (!gc.Vilid(r, c))
{
return;//非法行列好
}
if (!gc.m_bCanVisit[r][c])
{//rc是墙无法推动
return;
}
auto vDis = gc.Dis();
const int r2 = iOldR * 2 - r;
const int c2 = iOldC * 2 - c;
if (!gc.Vilid(r2, c2))
{
return;
}
if (vDis[r2][c2] >= 1000 * 1000)
{
return;//人没有地方占,无法推
}
Add(r, c, iOldR, iOldC);
};
std::queue<std::tuple<int, int, int, int>> preQue;
preQue.emplace(pB.first, pB.second, pS.first, pS.second);
for (int i = 0; preQue.size(); i++ )
{
while (preQue.size())
{
auto cur = preQue.front();
if ((get<0>(cur) == pT.first) && (get<1>(cur) == pT.second))
{
return i;
}
preQue.pop();
auto tmp = vCanVisit;
tmp[get<0>(cur)][get<1>(cur)] = false;
CGridCanVisit gc(tmp, get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)+1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)-1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)+1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)-1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
}
preQue.swap(que);
}
return -1;
}
int m_r;
int m_c;
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。
相关文章:

【广度优先搜索】【网格】【割点】【 推荐】1263. 推箱子
作者推荐 视频算法专题 涉及知识点 广度优先搜索 网格 割点 并集查找 LeetCode:1263. 推箱子 「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。 游戏地图用大小为 m x n 的网格 grid 表示,其中每个元素可以是墙、地板或…...

开店怎么做进销存
开设一家店铺,无论是实体店还是网店,进销存管理都是确保店铺正常运营和盈利的关键环节。一款良好的进销存管理软件可以帮助你更好地掌握库存情况、优化采购策略、提高销售效率,并最终实现盈利目标。那么,开店怎么做进销存管理呢&a…...

UE4 C++联网RPC教程笔记(三)(第8~9集)完结
UE4 C联网RPC教程笔记(三)(第8~9集)完结 8. exe 后缀实现监听服务器9. C 实现监听服务器 8. exe 后缀实现监听服务器 前面我们通过蓝图节点实现了局域网连接的功能,实际上我们还可以给项目打包后生成的 .exe 文件创建…...
程序员一定要远离“钻研技术无用,搞钱才是正道”的言论
不知道大家有没有刷到过这样的言论: "程序员真的不要花大量时间研究底层代码,技术钻研的再高级再牛也逃不过被优化的下场。 前辈们开发一个功能用一天,我开发一个功能得用一个星期,只会显得我像一个技术菜鸟࿰…...

el-table同时固定左列和右列时,出现错误情况
最近遇到一个问题,就是需求是要求表格同时固定序号列和操作列,我们用的是饿了么组件库的el-table,如下图,出现了错误情况: 解决方法就是使用doLayout方法: 如果使用了keep-alive,可以在activated里执行doLayout方法: activated() {this.$nextTick(() => {this.$ref…...

django自定义后端过滤
DRF自带的过滤 第一个 DjangoFilterBackend 是需要安装三方库见[搜索:多字段筛选]两外两个是安装注册了rest_framework就有。 如上图,只要配置了三个箭头所指的方向,就能使用。 第一个单字段过滤 用户视图集中加上filterset_fields …...

计算机网络Day03--物理层
信道复用技术 频分复用 时分复用 统计时分复用 频分复用(FDM) 最基本 将整个宽带分为多份,用户在分配到一定的频带后,在通信过程中自始至终都使用这个频带 所有的用户在同一时间占用不同的带宽资源,以并行的方式工…...
RabbitMQ节点故障的容错方案
RabbitMQ节点故障的容错方案 1. broker启动加载逻辑1.1 日志文件1.2 broker启动流程1.2.1 整体流程1.2.2 数据恢复流程 2. 队列高可用2.1 选主逻辑2.1.1 从节点晋升策略2.1.2 主队列选择策略 2.2 HA切换 3. 疑问和思考3.1 如果一个broker宕机,运行在broker上的队列数…...

瑞_Redis_初识Redis(含安装教程)
文章目录 1 初识Redis1.1 认识NoSQL1.1.1 结构化与非结构化1.1.2 关联和非关联1.1.3 查询方式1.1.4 事务1.1.5 总结 1.2 认识Redis1.2.1 介绍1.2.2 特征1.2.3 优势 1.3 安装Redis ★★★1.3.1 Linux安装Redis1.3.1.1 安装Redis依赖 1.3.2 Windows安装Redis1.3.2.1 安装步骤1.3.…...

Android进阶(二十九) 走近 IntentFilter
文章目录 一、什么是IntentFilter ?二、IntentFilter 如何过滤隐式意图?2.1 动作测试2.2 类别测试2.3 数据测试 一、什么是IntentFilter ? 如果一个 Intent 请求在一片数据上执行一个动作, Android 如何知道哪个应用程序…...
vue+element下日期组件momentjs转换赋值问题
记录下使用momentjs转换日期字符串赋值给element的日期组件报错问题; <el-date-pickerv-model"form.serviceTime"type"date"class"fill-w mar-t-xs"value-format"yyyy-MM-dd HH:mm:ss"placeholder"请选择日期&quo…...

普源(RIGOL) DHO914S示波器 简单开箱评测
普源精电(RIGOL) DHO914S 12bit数字示波器 简单开箱评测。 旧的示波器感觉不好用,所以换个新的,看中了普源的这款,主要看中它便携支持PD供电,还有伯德图功能,以及12bit的垂直分辨率。如果你对我上面说的点没需求&…...

docker 安装Oracle19c
一、下载镜像 docker pull registry.cn-hangzhou.aliyuncs.com/zhuyijun/oracle:19c通过docker images 命令查看 如下图:已经有oracle 19c镜像。 二、创建挂载文件 # 创建文件 mkdir -p /home/data/oracle/oradata# 授权,不授权会导致后面安装失败 c…...

qt-OPENGL-星系仿真
qt-OPENGL-星系仿真 一、演示效果二、核心程序三、下载链接 一、演示效果 二、核心程序 #include "model.h"Model::Model(QOpenGLWidget *_glWidget) { glWidget _glWidget;glWidget->makeCurrent();initializeOpenGLFunctions(); }Model::~Model() {destroyV…...
Java实战:Spring Boot实现AOP记录操作日志
本文将详细介绍如何在Spring Boot应用程序中使用Aspect Oriented Programming(AOP)来实现记录操作日志的功能。我们将探讨Spring Boot集成AOP的基本概念,以及如何使用Spring Boot实现AOP记录操作日志。最后,我们将通过一个具体示例…...
C++ //练习 7.38 有些情况下我们希望提供cin作为接受istream参数的构造函数的默认实参,请声明这样的构造函数。
C Primer(第5版) 练习 7.38 练习 7.38 有些情况下我们希望提供cin作为接受istream&参数的构造函数的默认实参,请声明这样的构造函数。 环境:Linux Ubuntu(云服务器) 工具:vim 代码块 Sa…...
算法:两数之和
算法:两数之和 方法一:暴力法 function twoSum(nums, target) {for (let i 0; i < nums.length; i) {for (let j i 1; j < nums.length; j) {if (nums[i] nums[j] target) {return [i, j];}}}return null; }方法二:哈希表 func…...

pytorch: ground truth similarity matrix
按照真实标签排序pair-wise相似度矩阵的Pytorch代码 本文仅作留档,用于输出可视化 Inputs: Ground-truths Y ∈ R n 1 \mathbf{Y}\in\mathbb R^{n\times 1} Y∈Rn1, Similarity matrix A ∈ R n n \mathbf{A}\in\mathbb R^{n\times n} A∈RnnOutputs: Block dia…...
鸿蒙 gnss 开关使能流程
先WiFi,后 定位,再从蓝牙到NFC,这个就是我大致熟悉开源鸿蒙代码的一个顺序流程,WiFi 的年前差不多基本流程熟悉了,当然还有很多细节和内容没有写到,后续都会慢慢的丰富起来,这一篇将开启GNSS的篇…...

设计模式-创建型模式-抽象工厂模式
抽象工厂模式(Abstract Factory Pattern):提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类。抽象工厂模式又称为Kit模式,它是一种对象创建型模式。 由于工厂方法模式中的每个工厂只生产一类产品&…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...