当前位置: 首页 > news >正文

数据结构与算法-常用排序算法

一、常用排序说明

        当涉及排序算法时,理解每个算法的工作原理、时间复杂度和空间复杂度是至关重要的。下面对常用排序算法进行详细说明:     

        1、冒泡排序(Bubble Sort):

        工作原理:比较相邻的元素并交换,每一轮将最大(或最小)的元素移动到数组末尾(或开头)。

        时间复杂度:平均情况和最坏情况均为 O(n^2)。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模数据集,对稳定性要求高的场景,或者作为教学和理解排序算法的基础。

        2、选择排序(Selection Sort):

        工作原理:每一轮选择最小(或最大)的元素放在已排序序列的末尾(或开头)。

        时间复杂度:平均情况和最坏情况均为 O(n^2)。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模数据集,简单易实现,但性能较差。对稳定性要求不高的场景。

        3、插入排序(Insertion Sort):

        工作原理:将未排序序列中的元素逐个插入到已排序序列中的适当位置。

        时间复杂度:平均情况和最坏情况均为 O(n^2)。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模或基本有序的数据集,对稳定性要求高的场景,用于改进其他排序算法的一部分。

        4、希尔排序(Shell Sort):

        工作原理:是插入排序的改进版,通过比较距离较远的元素进行交换,最终使数据基本有序,然后再使用插入排序。

        时间复杂度:取决于增量序列的选择,在实践中介于 O(n log^2 n) 和 O(n^2) 之间。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模或基本有序的数据集,对稳定性要求高的场景,用于改进其他排序算法的一部分。

        5、归并排序(Merge Sort):

        工作原理:采用分治法,将数组分成两半,分别排序,然后合并两个有序数组。

        时间复杂度:平均情况和最坏情况均为 O(n log n)。

        空间复杂度:O(n),需要额外的内存来存储临时数组。

        适用场景:适用于小规模或基本有序的数据集,对稳定性要求高的场景,用于改进其他排序算法的一部分。

        6、快速排序(Quick Sort):

        工作原理:采用分治法,选取一个基准值,将小于基准值的放在左边,大于基准值的放在右边,然后递归地对左右两部分进行排序。

        时间复杂度:平均情况为 O(n log n),最坏情况为 O(n^2)。

        空间复杂度:取决于实现方式,通常为 O(log n)。

        适用场景:适用于大规模数据集,性能优秀且易于实现。常用于实际生产环境中的排序需求。

        7、堆排序(Heap Sort):

        工作原理:利用堆的性质(最大堆或最小堆),将待排序数组构建成堆,然后每次取出堆顶元素,重新调整堆,直至完成排序。

        时间复杂度:平均情况和最坏情况均为 O(n log n)。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于大规模数据集,性能稳定且不受输入数据分布情况影响。适合内存受限的情况下进行排序。

        8、计数排序(Counting Sort):

        工作原理:统计待排序数组中每个元素出现的次数,然后根据元素的值将其放到正确的位置。

        时间复杂度:平均情况和最坏情况均为 O(n + k),其中 k 是非负整数的最大值。

        空间复杂度:O(n + k),需要额外空间来存储计数数组和输出数组。

        适用场景:适用于输入数据的范围相对较小,但数量较大的情况下,可以快速排序。对数字的频率进行统计。

        9、桶排序(Bucket Sort):

        工作原理:将待排序数据分到有限数量的桶里,每个桶再分别进行排序,最后合并所有桶的结果。

        时间复杂度:平均情况为 O(n + k),最坏情况为 O(n^2)。

        空间复杂度:O(n + k),需要额外空间来存储计数数组和输出数组。

        适用场景:适用于数据均匀分布在一个范围内的情况下,将数据分到多个桶中,然后对每个桶单独进行排序。

        10、基数排序(Radix Sort):

        工作原理:根据数字位进行排序,先按个位排序,再按十位排序,依次类推,直到最高位排序完成。

        时间复杂度:平均情况和最坏情况均为 O(d * (n + k)),其中 d 是数字位数,k 是基数(如 10 进制中的 10)。

        空间复杂度:O(n + k),需要额外空间来存储计数数组和输出数组。

        适用场景:适用于对数字进行排序的场景通过按位进行排序,每次排序根据数字位数来确定,效率高且稳定。

二、时间复杂度说明

        O(1):常数时间复杂度。无论输入规模的大小如何,算法的执行时间都是固定的。例如,访问数组中的一个元素,计算数组的长度等。无论数组中有多少个元素,时间都是恒定的。

        O(log n):对数时间复杂度。算法的执行时间与输入规模的对数成正比。典型的例子是二分查找算法。在一个有序数组中查找一个元素时,每次都将搜索空间减半,因此时间复杂度为对数级别。

        O(n):线性时间复杂度。算法的执行时间与输入规模成正比,呈线性增长。例如,遍历数组或链表中的所有元素。如果一个数组有 n 个元素,那么对每个元素的访问将花费 O(n) 的时间。

        O(n log n):线性对数时间复杂度。典型的例子是快速排序和归并排序等基于比较的排序算法。这些算法的执行时间与输入规模的对数乘以线性成正比。

        O(n^2):平方时间复杂度。算法的执行时间与输入规模的平方成正比。例如,嵌套循环的排序算法(如冒泡排序、选择排序),每个元素都需要与其他元素比较。

        O(2^n):指数时间复杂度。通常出现在递归算法中,每次递归都会产生指数级别的子问题。例如,求解所有可能的子集或排列问题。

        O(n!):阶乘时间复杂度。通常出现在全排列等组合问题中,需要计算所有可能的排列。例如,求解 n 个元素的所有排列可能性的问题。

三、空间复杂度说明

        O(1):常数空间复杂度。算法的额外空间使用是一个固定的常数,与输入规模无关。例如,原地排序算法,如冒泡排序、选择排序,不需要额外的空间。

        O(log n):对数空间复杂度。算法的额外空间使用与输入规模的对数成正比。例如,递归算法每次调用都会消耗对数级别的栈空间。二分搜索的递归版本就是一个典型的例子。

        O(n):线性空间复杂度。算法的额外空间使用与输入规模成正比,呈线性增长。例如,需要一个与输入规模相同大小的数组来存储数据,或者使用一个辅助数组来进行排序。

        O(n^2):平方空间复杂度。算法的额外空间使用与输入规模的平方成正比。例如,使用一个二维数组来存储所有可能的组合情况。

        O(2^n):指数空间复杂度。算法的额外空间使用与输入规模的指数成正比。通常出现在递归的指数增长情况下,例如,子集生成问题。

        O(n!):阶乘空间复杂度。算法的额外空间使用与输入规模的阶乘成正比。通常出现在全排列等组合问题中,需要存储所有可能的排列。

四、代码样例

(一) 冒泡排序(Bubble Sort)

#include <iostream>
using namespace std;void bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-i-1; j++) {if (arr[j] > arr[j+1]) {swap(arr[j], arr[j+1]);}}}
}int main() {int arr[] = {64, 34, 25, 12, 22, 11, 90};int n = sizeof(arr) / sizeof(arr[0]);bubbleSort(arr, n);cout << "Sorted array: ";for (int i = 0; i < n; i++) {cout << arr[i] << " ";}cout << endl;return 0;
}

(二) 选择排序(Selection Sort)

#include <iostream>
using namespace std;void selectionSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {int min_idx = i;for (int j = i+1; j < n; j++) {if (arr[j] < arr[min_idx]) {min_idx = j;}}swap(arr[i], arr[min_idx]);}
}int main() {int arr[] = {64, 34, 25, 12, 22, 11, 90};int n = sizeof(arr) / sizeof(arr[0]);selectionSort(arr, n);cout << "Sorted array: ";for (int i = 0; i < n; i++) {cout << arr[i] << " ";}cout << endl;return 0;
}

(三) 插入排序(Insertion Sort)

#include <iostream>
using namespace std;void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j+1] = arr[j];j--;}arr[j+1] = key;}
}int main() {int arr[] = {64, 34, 25, 12, 22, 11, 90};int n = sizeof(arr) / sizeof(arr[0]);insertionSort(arr, n);cout << "Sorted array: ";for (int i = 0; i < n; i++) {cout << arr[i] << " ";}cout << endl;return 0;
}

(四) 希尔排序(Shell Sort)

#include <iostream>
using namespace std;void shellSort(int arr[], int n) {for (int gap = n/2; gap > 0; gap /= 2) {for (int i = gap; i < n; i++) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}
}int main() {int arr[] = {64, 34, 25, 12, 22, 11, 90};int n = sizeof(arr) / sizeof(arr[0]);shellSort(arr, n);cout << "Sorted array: ";for (int i = 0; i < n; i++) {cout << arr[i] << " ";}cout << endl;return 0;
}

(五) 归并排序(Merge Sort)

#include <iostream>
#include <vector>
using namespace std;void merge(vector<int>& arr, int l, int m, int r) {int n1 = m - l + 1;int n2 = r - m;vector<int> L(n1), R(n2);for (int i = 0; i < n1; i++)L[i] = arr[l + i];for (int j = 0; j < n2; j++)R[j] = arr[m + 1 + j];int i = 0, j = 0, k = l;while (i < n1 && j < n2) {if (L[i] <= R[j]) {arr[k] = L[i];i++;} else {arr[k] = R[j];j++;}k++;}while (i < n1) {arr[k] = L[i];i++;k++;}while (j < n2) {arr[k] = R[j];j++;k++;}
}void mergeSort(vector<int>& arr, int l, int r) {if (l < r) {int m = l + (r - l) / 2;mergeSort(arr, l, m);mergeSort(arr, m + 1, r);merge(arr, l, m, r);}
}int main() {vector<int> arr = {64, 34, 25, 12, 22, 11, 90};int n = arr.size();mergeSort(arr, 0, n - 1);cout << "Sorted array: ";for (int i = 0; i < n; i++)cout << arr[i] << " ";cout << endl;return 0;
}

(六) 快速排序(Quick Sort)

#include <iostream>
#include <vector>
using namespace std;int partition(vector<int>& arr, int low, int high) {int pivot = arr[high];int i = low - 1;for (int j = low; j < high; j++) {if (arr[j] < pivot) {i++;swap(arr[i], arr[j]);}}swap(arr[i + 1], arr[high]);return i + 1;
}void quickSort(vector<int>& arr, int low, int high) {if (low < high) {int pi = partition(arr, low, high);quickSort(arr, low, pi - 1);quickSort(arr, pi + 1, high);}
}int main() {vector<int> arr = {64, 34, 25, 12, 22, 11, 90};int n = arr.size();quickSort(arr, 0, n - 1);cout << "Sorted array: ";for (int i = 0; i < n; i++)cout << arr[i] << " ";cout << endl;return 0;
}

(七) 堆排序(Heap Sort)

#include <iostream>
#include <vector>
using namespace std;void heapify(vector<int>& arr, int n, int i) {int largest = i;int l = 2 * i + 1;int r = 2 * i + 2;if (l < n && arr[l] > arr[largest])largest = l;if (r < n && arr[r] > arr[largest])largest = r;if (largest != i) {swap(arr[i], arr[largest]);heapify(arr, n, largest);}
}void heapSort(vector<int>& arr) {int n = arr.size();for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);for (int i = n - 1; i > 0; i--) {swap(arr[0], arr[i]);heapify(arr, i, 0);}
}int main() {vector<int> arr = {64, 34, 25, 12, 22, 11, 90};int n = arr.size();heapSort(arr);cout << "Sorted array: ";for (int i = 0; i < n; i++)cout << arr[i] << " ";cout << endl;return 0;
}

(八) 计数排序(Counting Sort)

#include <iostream>
#include <vector>
using namespace std;void countingSort(vector<int>& arr) {int n = arr.size();int maxVal = *max_element(arr.begin(), arr.end());int minVal = *min_element(arr.begin(), arr.end());int range = maxVal - minVal + 1;vector<int> count(range), output(n);for (int i = 0; i < n; i++)count[arr[i] - minVal]++;for (int i = 1; i < range; i++)count[i] += count[i - 1];for (int i = n - 1; i >= 0; i--) {output[count[arr[i] - minVal] - 1] = arr[i];count[arr[i] - minVal]--;}for (int i = 0; i < n; i++)arr[i] = output[i];
}int main() {vector<int> arr = {64, 34, 25, 12, 22, 11, 90};countingSort(arr);cout << "Sorted array: ";for (int i = 0; i < arr.size(); i++)cout << arr[i] << " ";cout << endl;return 0;
}

(九) 桶排序(Bucket Sort)

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;void bucketSort(vector<float>& arr) {int n = arr.size();vector<vector<float>> buckets(n);for (int i = 0; i < n; i++) {int bucketIndex = n * arr[i];buckets[bucketIndex].push_back(arr[i]);}for (int i = 0; i < n; i++)sort(buckets[i].begin(), buckets[i].end());int index = 0;for (int i = 0; i < n; i++) {for (float num : buckets[i]) {arr[index++] = num;}}
}int main() {vector<float> arr = {0.64, 0.34, 0.25, 0.12, 0.22, 0.11, 0.90};bucketSort(arr);cout << "Sorted array: ";for (int i = 0; i < arr.size(); i++)cout << arr[i] << " ";cout << endl;return 0;
}

(十) 基数排序(Radix Sort)

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;int getMax(vector<int>& arr) {int maxVal = arr[0];for (int i = 1; i < arr.size(); i++) {if (arr[i] > maxVal)maxVal = arr[i];}return maxVal;
}void countingSort(vector<int>& arr, int exp) {int n = arr.size();vector<int> output(n), count(10);for (int i = 0; i < n; i++)count[(arr[i] / exp) % 10]++;for (int i = 1; i < 10; i++)count[i] += count[i - 1];for (int i = n - 1; i >= 0; i--) {output[count[(arr[i] / exp) % 10] - 1] = arr[i];count[(arr[i] / exp) % 10]--;}for (int i = 0; i < n; i++)arr[i] = output[i];
}void radixSort(vector<int>& arr) {int maxVal = getMax(arr);for (int exp = 1; maxVal / exp > 0; exp *= 10)countingSort(arr, exp);
}int main() {vector<int> arr = {64, 34, 25, 12, 22, 11, 90};radixSort(arr);cout << "Sorted array: ";for (int i = 0; i < arr.size(); i++)cout << arr[i] << " ";cout << endl;return 0;
}

相关文章:

数据结构与算法-常用排序算法

一、常用排序说明 当涉及排序算法时&#xff0c;理解每个算法的工作原理、时间复杂度和空间复杂度是至关重要的。下面对常用排序算法进行详细说明&#xff1a; 1、冒泡排序&#xff08;Bubble Sort&#xff09;&#xff1a; 工作原理&#xff1a;比较相邻的元素并交换&am…...

链表之“无头单向非循环链表”

目录 ​编辑 1.顺序表的问题及思考 2.链表 2.1链表的概念及结构 2.2无头单向非循环链表的实现 1.创建结构体 2.单链表打印 3.动态申请一个节点 3.单链表尾插 4.单链表头插 5.单链表尾删 6.单链表头删 7.单链表查找 8.单链表在pos位置之前插入x 9.单链表删除pos位…...

一休哥助手网页版如何使用

一休哥助手网页版可以使用GPT4提问了&#xff0c;具体操作流程如下&#xff1a; 1.登录网页版一休哥助手&#xff08;首次打开页面时&#xff0c;初始化久一点&#xff0c;请耐心等一下&#xff09; https://www.fudai.fun 2.登录后就可以使用GPT4了 3.你还可以自定义系统角色…...

个人博客系统测试

文章目录 一、项目介绍二、测试1. 功能测试2. 自动化测试&#xff08;1&#xff09;添加相关依赖&#xff08;2&#xff09;新建包并在报下创建测试类&#xff08;3&#xff09;亮点及难点 一、项目介绍 个人博客系统采用前后端分离的方法来实现&#xff0c;同时使用了数据库来…...

智慧应急的未来:物联网技术引领智慧应急发展新趋势

一、引言 随着社会的快速发展&#xff0c;各类突发事件频繁发生&#xff0c;对社会的安全稳定构成了严重威胁。传统的应急管理模式已难以满足现代社会对安全保障的需求&#xff0c;急需探索新型的应急管理手段。在这个背景下&#xff0c;智慧应急应运而生&#xff0c;以其高效…...

字符串摘要(C语言)

题目描述 给定一个字符串的摘要算法&#xff0c;请输出给定字符串的摘要值。 去除字符串中非字母的符号。如果出现连续字符&#xff08;不区分大小写&#xff09;&#xff0c;则输出&#xff1a;该字符&#xff08;小写&#xff09; 连续出现的次数。如果是非连续的字符&…...

Linux进一步研究权限-----------ACL使用

一、使用情况 1.1、场景: 某个大公司&#xff0c;在一个部门&#xff0c;有一个经理和手下有两个员工&#xff0c;在操控一个Linux项目,项目又分为三期做&#xff0c;然而一期比较重要&#xff0c;经理带着员工做完了&#xff0c;公司就觉得技术难点已经做完攻克了&#xff0…...

剪辑视频调色软件有哪些 剪辑视频软件哪个最好 剪辑视频怎么学 剪辑视频的方法和步骤 会声会影2024 会声会影视频制作教程

看了很多调色教程&#xff0c;背了一堆调色参数&#xff0c;可最终还是调不出理想的效果。别再怀疑自己了&#xff0c;不是你的剪辑技术不行&#xff0c;而是剪辑软件没选对。只要掌握了最基本的调色原理&#xff0c;一款适合自己的视频剪辑软件是很容易出片的。 有关剪辑视频…...

【Linux进阶之路】Socket —— “UDP“ “TCP“

文章目录 一、再识网络1. 端口号2. 网络字节序列3.TCP 与 UDP 二、套接字1.sockaddr结构2.UDP1.server端1.1 构造函数1.2 Init1.3 Run 2.客户端1.Linux2.Windows 3.TCP1. 基本接口2. 客户端3. 服务端1.版本12.版本23.版本34.版本4 三、守护进程尾序 一、再识网络 1. 端口号 在…...

一些用 GPT 翻译的计算机科学/人工智能 PDF 讲义

3D成像.pdf3D成像技术.pdf3D点云分析.pdfAAAI 2019 笔记.pdfCMU 10.708 概率图模型讲义.pdfCMU 15-312 编程语言基础讲义.pdfCMU 15-411 编译器设计讲义.pdfCMU 15-819 同伦类型论讲义.pdfCMU 15-819O 程序分析讲义.pdfCUNY CSci335 软件设计与分析 3 讲义.pdfDixie IT4500 信息…...

重大更新:GPT-4 API 现全面向公众开放!

重大更新&#xff1a;GPT-4 API 现全面向公众开放&#xff01; 在 AIGC&#xff08;人工智能生成内容&#xff09;领域内&#xff0c;我们一直致力于跟踪和分析如 OpenAI、百度文心一言等大型语言模型&#xff08;LLM&#xff09;的进展及其在实际应用中的落地情况。我们还专注…...

【Python笔记-设计模式】对象池模式

一、说明 用于管理对象的生命周期&#xff0c;重用已经创建的对象&#xff0c;从而减少资源消耗和创建对象的开销 (一) 解决问题 主要解决频繁创建和销毁对象所带来的性能开销问题。如数据库连接、线程管理、网络连接等&#xff0c;对象的创建和销毁成本相对较高&#xff0c…...

反序列化 [NPUCTF2020]ReadlezPHP1

打开题目 直接查看源代码 打开源代码发现了个./time.php?source 访问一下 审计代码&#xff1a; 现存在反序列化语句&#xff1a;$ppp unserialize($_GET["data"]);和执行漏洞&#xff1a;echo $b($a); 发现在__destruct()方法里面有 echo $b($a); 这个是php的…...

AI技术那些事儿:揭开潜伏在你生活中的高科技小能手

你有没有发现&#xff0c;现在的生活里有些“看不见”的聪明家伙&#xff0c;它们时时刻刻在帮咱们忙活呢&#xff1f;从早上用语音命令打开窗帘、播报新闻&#xff0c;到晚上喊一声关灯睡觉&#xff0c;这些都离不开人工智能&#xff08;简称AI&#xff09;的助攻。今天咱就掰…...

使用向量数据库pinecone构建应用06:日志系统异常检测 Anomaly Detection

Building Applications with Vector Databases 下面是这门课的学习笔记&#xff1a;https://www.deeplearning.ai/short-courses/building-applications-vector-databases/ Learn to create six exciting applications of vector databases and implement them using Pinecon…...

抽象工厂模式 Abstract Factory

1.模式定义: 提供一个创建一系列相关或互相依赖对象的接口&#xff0c;而无需指定它们具体的类 2. 应用场景: 程序需要处理不同系列的相关产品&#xff0c;但是您不希望它依赖于这些产品的 具体类时&#xff0c; 可以使用抽象工厂 3.优点: 1.可以确信你从工厂得到的产品彼…...

掌握 Android 中的 RecyclerView 优化

掌握 Android 中的 RecyclerView 优化 一、RecyclerView Pool以及何时使用它二、onCreateViewHolder 和 onBindViewHolder三、优化 RecyclerView 的不同方法四、视图无效与请求布局五、ViewHolder模式六、默认的废料和脏视图类型七、结论 RecyclerView 是 Android 中一个功能强…...

Android platform tool中d8.bat不生效

d8.bat因找不到java_exe文件&#xff0c;触发EOF d8.bat中之前代码为&#xff1a; set java_exe if exist "%~dp0..\tools\lib\find_java.bat" call "%~dp0..\tools\lib\find_java.bat" if exist "%~dp0..\..\tools\lib\find_java.bat" …...

WSL安装Ubuntu22.04,以及深度学习环境的搭建

安装WSL 安装 WSL 2 之前&#xff0c;必须启用“虚拟机平台”可选功能。 计算机需要虚拟化功能才能使用此功能。 以管理员身份打开 PowerShell 并运行&#xff1a; dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart下载 Linux 内核更…...

【PTA|选择题|期末复习】结构体

2-1 For the following declarations,assignment expression_is not correct. struct Student {long num;char name[28];}st1,st2{101,"Tom"},*p&st1; 〇 A.st1 st2 ◎ B.p->name st2.name O C p->num st2.num 〇 D,*pst2 2-2 下面定义结构变量的语…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...