当前位置: 首页 > news >正文

week04day03(爬虫 beautifulsoup4、)

一. 使用bs4解析网页

'''
下载bs4 - pip install beautifulsoup4
使用的时候 import bs4专门用于解析网页的第三方库
在使用bs4的时候往往会依赖另一个库lxml
pip install lxml
'''

网页代码

<!DOCTYPE html>
<html><head><meta charset="utf-8"><title>Title</title></head><body><h2>电影大全</h2><div id="box1"><div class="item"><p>肖生克的救赎</p><span>评分:</span><span class="score">9.7</span></div><div class="item"><p>霸王别姬</p><span>评分:</span><span class="score">9.6</span></div><div class="item"><p>阿甘正传</p><span>评分:</span><span class="score">9.5</span></div><img src="https://img9.doubanio.com/view/photo/s_ratio_poster/public/p457760035.webp" class=""><div id="box2"><div><p>我是段落1</p></div></div></div></body>
</html>

对以上代码进行操作:

from bs4 import BeautifulSoup
# bs4 用法
# 1.准备需要解析的数据
html = open('for_bs4.html',encoding='utf-8').read()# 2.生成基于网页源代码的bs4对象
soup = BeautifulSoup(html,'lxml')# 3.获取标签
# soup.select()   在整个网页中获取css选择器选中的所以标签
#soup.select_one() 在整个网页中获取css选择器中的第一个标签result = soup.select('#box1 p')
print(result)
result1 = soup.select_one('#box1 p')
print(result1)'''
总结:标签对象.select(css选择器)     获取css选择器所有标签,返回一个列表,列表中元素是标签对象标签对象.select_one(css选择器)  获取第一个标签,结果是标签对象
'''result3 =soup.select('p')
#print(result3)result4 = soup.select('#box2')
#print(result4)#4. 获取标签内容和标签属性
p = soup.select_one('p')
img = soup.select_one('img')# a.获取标签内容  标签对象.text
print(p.text)  #肖申克的救赎
# b. 获取标签的属性值
print(img.attrs['src'])
# https://b0.bdstatic.com/ugc/mFgjRS-3T9fHnYC3CAxHHwba8a3cbd3af3e42ddda89fa78b831a5f.jpg@h_1280

二. 爬取豆瓣电影的信息

from bs4 import BeautifulSoup
import requests
import csv# 1.获取网页数据
def get_net_data(url: str):# headers进行伪装成正常的浏览器访问headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'}# 获取网页代码信息response = requests.get(url=url, headers=headers)# 返回解析后的代码信息return response.text# 2.解析网页数据
# ol class='grid_view' ->li ->div .item
#这里的html 就是第一步中解析网页代码后的信息
def analyse_data(html: str):# 生成基于网页源代码的bs4对象soup = BeautifulSoup(html, 'lxml')# 将所需要的电影信息代码块都获取下来all_films_div = soup.select('.grid_view>li>.item')all_data = []# 遍历每一个代码块,一个代码块都是一部电影的具体信息for div in all_films_div:name = div.select_one('.title').textinfo = div.select_one('.bd>p').text.strip().split('\n')[-1].strip()time, country, category = info.split('/')score = div.select_one('.rating_num').textcomment_count = div.select('.star>span')[-1].text[:-3]intro = div.select_one('.inq').textall_data.append([name, score, time.strip(), country.strip(), category.strip(), comment_count, intro])f = open('../files/第一页电影数据.csv','w',encoding='utf-8',newline='')#创建一个 CSV 文件写入器,并将其关联到一个已经打开的文件对象 f 上,就是在创建的第一页数据电影文件中准备录入信息writer = csv.writer(f)# 写的是表头 writerow 只写一行writer.writerow(['电影名字','评分','上映时间','发行国家地区','类型','评论人数','简介'])# csv文件中写入内容writer.writerows(all_data)if __name__ == '__main__':# for q in range(0, 251, 25):#     url1 = f'https://movie.douban.com/top250?start={q}&filter='result = get_net_data(url='https://movie.douban.com/top250') #返回的是 response.textanalyse_data(result)

三. 爬取250部电影(二只爬取了第一页内容,网站有很多页)

from bs4 import BeautifulSoup
import requests
import csv# 1.获取网页数据
def get_net_data(url: str):# headers进行伪装成正常的浏览器访问headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'}# 获取网页代码信息response = requests.get(url=url, headers=headers)# 返回解析后的代码信息return response.text# 2.解析网页数据
# ol class='grid_view' ->li ->div .item
#这里的html 就是第一步中解析网页代码后的信息
def analyse_data(html: str):# 生成基于网页源代码的bs4对象soup = BeautifulSoup(html, 'lxml')# 将所需要的电影信息代码块都获取下来all_films_div = soup.select('.grid_view>li>.item')all_data = []# 遍历每一个代码块,一个代码块都是一部电影的具体信息for div in all_films_div:name = div.select_one('.title').textinfo = div.select_one('.bd>p').text.strip().split('\n')[-1].strip()time, country, category = info.split('/')score = div.select_one('.rating_num').textcomment_count = div.select('.star>span')[-1].text[:-3]intro = div.select_one('.inq').textall_data.append([name, score, time.strip(), country.strip(), category.strip(), comment_count, intro])f = open('../files/250部电影数据.csv','w',encoding='utf-8',newline='')#创建一个 CSV 文件写入器,并将其关联到一个已经打开的文件对象 f 上,就是在创建的第一页数据电影文件中准备录入信息writer = csv.writer(f)# 写的是表头 writerow 只写一行writer.writerow(['电影名字','评分','上映时间','发行国家地区','类型','评论人数','简介'])# csv文件中写入内容writer.writerows(all_data)'''
在这里有所改变,看下面代码,上面都一样
'''
if __name__ == '__main__':for page in range(0, 250, 25):url = f'https://movie.douban.com/top250?start={page}&filter='result = get_net_data(url=url) #返回的是 response.textanalyse_data(result)

四. os模块(看创建的文件是否存在,不存在进行创建,这是避免使用open的时候出现文件不存在的报错)

import os
if not os.path.exists('../files/abc'):os.mkdir('../files/abc')

五. 爬取英雄联盟的英雄名字(json)方法

    json在netwok 中的 fetch/xhr 中找

import requests
response = requests.get('https://game.gtimg.cn/images/lol/act/img/js/heroList/hero_list.js')
result = response.json()for x in result['hero']:print(x['name'],x['alias'])
  • 找到network(网络),然后点击Fetch/XHR

  • 一一找到名称列表的文件,通过preview(预览)查看是否我们需要的数据

  • 查看json数据结构,并获取数据

六.下载安妮的皮肤

import requests# 1.定义一个函数
#img:是图片链接
def download(img: str, name: str):res = requests.get(img)with open(f'../skin/{name}.jpg', 'wb') as f:# 因为是图片所有用contentf.write(res.content)# 2.主程序入口下载图片
#用的还是json 还是network 下 fetch/xhr找
if __name__ == '__main__':response = requests.get('https://game.gtimg.cn/images/lol/act/img/js/hero/1.js')result = response.json()for x in result['skins']:name = x['name']img_url = x['mainImg']if not img_url:img_url = x['chromaImg']download(img_url,name)

相关文章:

week04day03(爬虫 beautifulsoup4、)

一. 使用bs4解析网页 下载bs4 - pip install beautifulsoup4 使用的时候 import bs4专门用于解析网页的第三方库 在使用bs4的时候往往会依赖另一个库lxml pip install lxml 网页代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><…...

04 动力云客之登录后获取用户信息+JWT存进Redis+Filter验证Token + token续期

1. 登录后获取用户信息 非常好实现. 只要新建一个controller, 并调用SS提供的Authentication对象即可 package com.sunsplanter.controller;RestController public class UserController {GetMapping(value "api/login/info")public R loginInfo(Authentication a…...

RISC-V知识总结 —— 指令集

资源1: RISC-V China – RISC-V International 资源2: RISC-V International – RISC-V: The Open Standard RISC Instruction Set Architecture 资源3: RV32I, RV64I Instructions — riscv-isa-pages documentation 1. 指令集架构的类型 在讨论RISC-V或任何处理器架构时&…...

基于Java jsp+mysql+Spring的汽车出租平台租赁网站平台设计和实现

基于Java jspmysqlSpring的汽车出租平台租赁网站平台设计和实现 博主介绍&#xff1a;5年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留…...

[AutoSar]BSW_Com 01 Can通信入门

目录 关键词平台说明一、车身CAN简介二、相关模块三、Can报文分类及信号流路径3.1 应用报文3.2 应用报文&#xff08;多路复用multiplexer&#xff09;3.3 诊断报文3.4 网络管理报文3.5 XCP报文&#xff08;标定报文&#xff09; 关键词 嵌入式、C语言、autosar、OS、BSW 平台…...

离散数学 第七单元 tree

目录 树的定义 树的特点 Spanning Tree 生成树&#xff08;重要&#xff01;&#xff09; 生成树算法 DFS 深度优先 BFS 广度优先 Minimun Spanning Tree 最小生成树 ​Kruscal算法 Prim算法 根树 根数的遍历 前序遍历 中序遍历 后序遍历 表达式的二叉树 中缀…...

基于MPPT最大功率跟踪算法的涡轮机控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于MPPT最大功率跟踪算法的涡轮机控制系统simulink建模与仿真.mppt采用爬山法实现&#xff0c;仿真输出MPPT控制效果&#xff0c;功率&#xff0c;转速等。 2.系统仿真结果 …...

Hbase和Clickhouse对比简单总结

Hbase和Clickhouse是两种不同的数据库系统&#xff0c;它们各自适用于不同的场景。以下是两者之间的对比&#xff1a; 数据模型&#xff1a; HBase 是一种基于列的存储系统&#xff0c;它适合处理大规模的数据集&#xff0c;特别是那些需要快速随机访问的场景。ClickHouse 则是…...

Spring基础之AOP和代理模式

文章目录 理解AOPAOP的实现原理 AOP代理模式静态代理动态代理1-JDK动态代理2-CGLIB动态代理 总结 理解AOP OOP - - Object Oriented Programming 面向对象编程 AOP - - Aspect Oriented Programming 面向切面编程 AOP是Spring提供的关键特性之一。AOP即面向切面编程&#xff0…...

二层交换机和三层交换机区别

01、二层交换机 二层交换机&#xff0c;也被称为数据链路层交换机&#xff0c;是在OSI模型的数据链路层&#xff08;第二层&#xff09;进行数据交换的设备。它基于MAC&#xff08;Media Access Control&#xff09;地址来转发数据包&#xff0c;实现局域网内部的数据传输 1、…...

【Java程序设计】【C00267】基于Springboot的在线考试系统(有论文)

基于Springboot的在线考试系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 本系统是基于Springboot的在线考试系统&#xff1b;本系统主要分为管理员、教师和学生三种角色&#xff1b; 管理员登录系统后&#xff0c;可以对首页&#x…...

【LeetCode】416. 分割等和子集(中等)——代码随想录算法训练营Day41

题目链接&#xff1a;416. 分割等和子集 题目描述 给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集&#xff0c;使得两个子集的元素和相等。 示例 1&#xff1a; 输入&#xff1a;nums [1,5,11,5] 输出&#xff1a;true 解释&#x…...

51单片机学习(4)-----独立按键进一步控制LED灯

前言&#xff1a;感谢您的关注哦&#xff0c;我会持续更新编程相关知识&#xff0c;愿您在这里有所收获。如果有任何问题&#xff0c;欢迎沟通交流&#xff01;期待与您在学习编程的道路上共同进步。 目录 一. 独立按键灵活控制LED 程序一&#xff1a;单个独立按键控制多个…...

Redis 学习笔记 3:黑马点评

Redis 学习笔记 3&#xff1a;黑马点评 准备工作 需要先导入项目相关资源&#xff1a; 数据库文件 hmdp.sql后端代码 hm-dianping.zip包括前端代码的 Nginx 启动后端代码和 Nginx。 短信登录 发送验证码 PostMapping("code") public Result sendCode(RequestP…...

电脑恢复删除数据的原理和方法

在恢复数据的时候&#xff0c;很多人都会问&#xff0c;为什么删除的数据还能恢复&#xff1f;本篇和大家一起了解下硬盘上数据的存储方式&#xff0c;文件被删除的时候具体发生了什么&#xff0c;帮助大家理解数据恢复的基本原理。最后还会分享一个好用的数据恢复工具并附上图…...

SpringBoot和SpringCloud的区别,使用微服务的好处和缺点

SpringBoot是一个用于快速开发单个Spring应用程序的框架&#xff0c;通过提供默认配置和约定大于配置的方式&#xff0c;快速搭建基于Spring的应用。让程序员更专注于业务逻辑的编写&#xff0c;不需要过多关注配置细节。可以看成是一种快速搭建房子的工具包&#xff0c;不用从…...

32单片机基础:GPIO输出

目录 简介&#xff1a; GPIO输出的八种模式 STM32的GPIO工作方式 GPIO支持4种输入模式&#xff1a; GPIO支持4种输出模式&#xff1a; 浮空输入模式 上拉输入模式 下拉输入模式 模拟输入模式&#xff1a; 开漏输出模式&#xff1a;&#xff08;PMOS无效&#xff0c;就…...

【linux】查看openssl程序的安装情况

【linux】查看openssl程序的安装情况 1、查看安装包信息 $ rpm -qa |grep openssl 2、安装路径 $ rpm -ql openssl $ rpm -ql openssl-libs $ rpm -ql openssl-devel 3、相关文件和目录 /usr/bin/openssl /usr/include/openssl /usr/lib64/libssl.so.* /usr/lib64/libcrypto…...

高防服务器主要运用在哪些场景?

高防服务器主要是用来防御DDOS攻击的服务器&#xff0c;能够为客户提供安全维护&#xff0c;高防服务器能够帮助网站拒绝服务攻击&#xff0c;定时扫描网络主节点&#xff0c;进行查找可能会出现的安全漏洞的服务类型&#xff0c;高防服务器也会根据不同的IDC机房环境来提供硬防…...

Eureka:微服务中的服务注册与发现机制

引言 在微服务架构中&#xff0c;由于服务数量巨大并且各个服务的实例可能会频繁上下线&#xff0c;因此服务注册和发现机制至关重要。 那么&#xff0c;有什么工具或技术可以帮助我们解决这个问题呢&#xff1f; 答案就是Eureka。 一、Eureka简介 Eureka是Netflix公司开源的…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...