pythonJax小记(五):python: 使用Jax深度图像(正交投影和透视投影之间的转换)(持续更新,评论区可以补充)
python: 使用Jax深度图像(正交投影和透视投影之间的转换)
- 前言
- 问题描述
- 1. 透视投影
- 2. 正交投影
 
- 直接上代码
- 解释
- 1. `compute_projection_parameters` 函数
- a. 参数解释
- b. 函数计算
 
- 2. `ortho_to_persp` 函数
- a. 计算投影参数:
- b. 生成像素坐标网格:
- c. 计算透视深度值:
 
- 3. `persp_to_ortho` 函数
- a. 计算投影参数:
- b. 生成像素坐标网格:
- c. 计算正交深度值:
 
 
前言
自用,刚开始接触可能顺序会比较乱。
问题描述
目前我知道的(欢迎评论区补充)照相机生成的深度图像有两种方法(如下图):
 
在透视投影中,物体的大小和形状会根据其距离观察者的远近而发生变化,这是因为透视投影模拟了人眼或相机镜头观察世界的方式,远处的物体看起来更小,近处的物体看起来更大。而在正交投影中,物体的大小和形状与其距离无关,提供了一种更抽象但尺寸精确的视图。
现在假设照相机正在观察一个又大平面又平整的物体:
1. 透视投影
在透视投影中,物体的大小会随着距离相机的远近而变化,即距离相机越远,物体在图像上看起来越小。这种投影方式能够模拟人眼观察世界的方式,因此在大多数三维图形应用中,透视投影是用来创建更加真实感的视觉效果。

 虚线部分是照相机到照射物体的距离,从左到右依次叫做depth1p,depth2p,depth3p,depth4p,depth5p;它们之间的关系应该是:
depth1p=depth5p>depth2p=depth4p>depth3p
2. 正交投影
在正交投影中,所有的投影线都是平行的。这意味着无论物体距离相机有多远,它的大小在投影图上都保持不变。正交投影常用于工程图纸和某些类型的艺术作品,因为它不会因为透视而扭曲物体的比例。

虚线部分是照相机到照射物体的距离,从左到右依次叫做depth1o,depth2o,depth3o,depth4o,depth5o;它们之间的关系应该是:
depth1o=depth2o=depth3o=depth4o=depth5o=depth3p(透视投影中最中心点的距离)
我想做的是depth1p <——>depth1o,depth2p <——>depth2o,depth3p <——>depth3o(数值相等不变),depth4p <——>depth4o,depth5p <——>depth5o之间的互相转化。
直接上代码
from jax import random
import jax.numpy as jnp
from jax import jitdef compute_projection_parameters(fov, resolution):"""计算透视投影所需的参数"""h, w = resolutionf = 0.5 * w / jnp.tan(fov * 0.5)  # 假设fov是水平的# f = 0.5 * h / jnp.tan(fov * 0.5)  # 假设fov是竖直的cx, cy = w * 0.5, h * 0.5return f, cx, cy@jit
def ortho_to_persp(depth_ortho, fov, resolution):"""正交投影深度图转换为透视投影深度图"""f, cx, cy = compute_projection_parameters(fov, resolution)y, x = jnp.indices(depth_ortho.shape)z = depth_orthox_persp = (x - cx) * z / fy_persp = (y - cy) * z / fdepth_persp = jnp.sqrt(x_persp**2 + y_persp**2 + z**2)return depth_persp@jit
def persp_to_ortho(depth_persp, fov, resolution):     """透视投影深度图转换为正交投影深度图"""    f, cx, cy = compute_projection_parameters(fov, resolution)     y, x = jnp.indices(depth_persp.shape)     # 逆向透视效果调整深度值    z = depth_persp     # 假设所有点在深度图中直接面向相机,计算透视图中的实际深度    depth_ortho = z / jnp.sqrt(((x - cx) / f)**2 + ((y - cy) / f)**2 + 1)     return depth_ortho# 创建随机键
key = random.PRNGKey(0)# 示例参数
fov = jnp.radians(58.0)  # 58度的视场
resolution = (555, 555)  # 深度图的分辨率# 使用JAX的随机数生成函数来创建假设的深度图
depth_ortho = random.uniform(key, resolution)
depth_persp = random.uniform(key, resolution)# 执行转换
depth_persp_converted = ortho_to_persp(depth_ortho, fov, resolution)
depth_ortho_converted = persp_to_ortho(depth_persp, fov, resolution)print("depth_ortho[277][277]:")
print(depth_ortho[277][277])
print("depth_ortho:")
print(depth_ortho)
print("depth_persp_converted[277][277]:")
print(depth_persp_converted[277][277])
print("depth_persp_converted:")
print(depth_persp_converted)print("depth_persp[277][277]:")
print(depth_persp[277][277])
print("depth_persp:")
print(depth_persp)
print("depth_ortho_converted[277][277]:")
print(depth_ortho_converted[277][277])
print("depth_ortho_converted:")
print(depth_ortho_converted)
输出:
depth_ortho[277][277]:
0.17295325
depth_ortho:
[[0.63084936 0.12969959 0.13633609 ... 0.5946181  0.59479845 0.4128834 ]
[0.29537833 0.3383578  0.5370909  ... 0.53237784 0.90082276 0.5761422 ]
[0.32716596 0.12419498 0.6801119  ... 0.55152595 0.48904026 0.8486302 ]
...
[0.30268252 0.2692206  0.73559785 ... 0.210132   0.06937218 0.61453307]
[0.30586207 0.18751395 0.5052029  ... 0.364128   0.3952657  0.09071398]
[0.64812434 0.6937938  0.5302503  ... 0.21545482 0.274127   0.7742363 ]]
depth_persp_converted[277][277]:
0.17295341
depth_persp_converted:
[[0.8015802  0.16468817 0.17299668 ... 0.7539958  0.75473905 0.5242654 ]
[0.37506145 0.4293407  0.68104595 ... 0.6746088  1.142268   0.73106426]
[0.41514048 0.15748264 0.8618096  ... 0.6983931  0.61969155 1.0760863 ]
...
[0.38381162 0.34114605 0.93148196 ... 0.26590642 0.08784546 0.7787128 ]
[0.388108   0.23777282 0.6401722  ... 0.46109253 0.5008643  0.11502781]
[0.82296646 0.88035184 0.6723719  ... 0.2730161  0.34760055 0.98242503]]
depth_persp[277][277]:
0.17295325
depth_persp:
[[0.63084936 0.12969959 0.13633609 ... 0.5946181  0.59479845 0.4128834 ]
[0.29537833 0.3383578  0.5370909  ... 0.53237784 0.90082276 0.5761422 ]
[0.32716596 0.12419498 0.6801119  ... 0.55152595 0.48904026 0.8486302 ]
...
[0.30268252 0.2692206  0.73559785 ... 0.210132   0.06937218 0.61453307]
[0.30586207 0.18751395 0.5052029  ... 0.364128   0.3952657  0.09071398]
[0.64812434 0.6937938  0.5302503  ... 0.21545482 0.274127   0.7742363 ]]
depth_ortho_converted[277][277]:
0.17295307
depth_ortho_converted:
[[0.49648297 0.10214445 0.10744441 ... 0.46892923 0.4687517  0.32516485]
[0.23262416 0.26665536 0.4235641  ... 0.42013407 0.7104127  0.45405012]
[0.25783455 0.09794345 0.53672194 ... 0.4355439  0.3859345  0.6692523 ]
...
[0.23870227 0.21245952 0.58090675 ... 0.1660564  0.05478369 0.4849681 ]
[0.24104528 0.14787847 0.39868954 ... 0.2875544  0.31193072 0.07153945]
[0.510428   0.5467698  0.41816944 ... 0.17002945 0.21618383 0.6101655 ]]
解释
1. compute_projection_parameters 函数
 
compute_projection_parameters函数的目的是根据给定的视场角(Field of View, FOV)和图像分辨率来计算透视投影所需的参数。这些参数主要是焦距(f)和图像的中心点坐标(cx,cy)。这些参数对于将三维空间中的点投影到二维图像平面上,以及进行透视投影与正交投影之间的转换非常重要。
a. 参数解释
-  fov:视场角,表示相机视角的宽度。在三维图形和计算机视觉中,FOV是一个关键参数,因为它定义了可见场景的范围。视场角越大,相机能够看到的场景就越宽广。 
-  resolution:图像分辨率,通常以像素为单位表示图像的宽度和高度。在这个上下文中,分辨率告诉我们图像平面的尺寸,这对于计算图像中点的位置非常重要。 
b. 函数计算
焦距(f) 的计算基于视场角(FOV)和图像宽度。焦距是一个表示相机与图像平面之间距离的参数,它影响着场景在图像平面上的投影方式。在这个函数中,焦距是通过下面的公式计算的:
  f = 0.5 × w i d t h / t a n ( F O V / 2 ) f = 0.5 × width / tan(FOV/2) f=0.5×width/tan(FOV/2)
 这个公式利用了简单的三角形几何关系,其中假设图像平面的宽度直接对应于视场角的跨度。通过这个公式,我们可以根据视场角和图像宽度计算出焦距。
图像中心点坐标(cx,cy) 的计算很直接:它们是图像宽度和高度的一半。图像中心点是图像平面上的一个关键参考点,因为它通常被用作投影和反投影过程中的原点。
2. ortho_to_persp 函数
 
ortho_to_persp函数的目的是将正交投影的深度图转换为透视投影的深度图。这个转换过程需要根据视场角(FOV)、图像分辨率以及焦距(f)和图像中心(cx, cy)这些计算出的投影参数来完成。
a. 计算投影参数:
首先,利用compute_projection_parameters函数根据FOV和图像分辨率计算出焦距(f)和图像中心(cx, cy)。
b. 生成像素坐标网格:
使用jnp.indices生成一个与输入深度图相同尺寸的像素坐标网格。这个网格包含了每个像素点的行(y)和列(x)坐标。
c. 计算透视深度值:
- 通过(x - cx)和(y - cy)计算每个像素点相对于图像中心的偏移。
- 使用偏移值和深度值(z)以及焦距(f)来调整每个像素的深度值。这里,深度值(z)乘以偏移量除以焦距,计算出在透视视图下像素的“新”位置。
- 最后,利用jnp.sqrt(x_persp**2 + y_persp**2 + z**2)计算每个像素点在透视投影中的实际深度值。这个步骤通过考虑像素在透视投影中的三维空间位置(考虑深度z)来调整深度图,使得远处的物体看起来更小,近处的物体看起来更大。
3. persp_to_ortho 函数
 
persp_to_ortho函数的目的是将透视投影的深度图转换为正交投影的深度图。这个过程需要逆转透视投影中深度与像素位置关系的影响,恢复到一个正交视图中,其中物体的大小不会因为它们距离相机的远近而改变。
a. 计算投影参数:
首先,利用compute_projection_parameters函数根据FOV和图像分辨率计算出焦距(f)和图像中心(cx, cy)。
b. 生成像素坐标网格:
使用jnp.indices生成一个与输入深度图相同尺寸的像素坐标网格。这个网格包含了每个像素点的行(y)和列(x)坐标。
c. 计算正交深度值:
在公式depth_ortho = z / jnp.sqrt(((x - cx) / f)**2 + ((y - cy) / f)**2 + 1)中:
- (x - cx)和- (y - cy)计算的是像素点相对于图像中心的位置差异。
- / f是根据焦距来缩放这些差异,使其与实际的视角对应起来。
- ((x - cx) / f)**2 + ((y - cy) / f)**2计算的是像素点从图像中心到该点的距离的平方,这个距离是在图像平面上的。
- +1实际上是在计算直角三角形的斜边长度时必须添加的项。想象一个直角三角形,其中(x - cx) / f和(y - cy) / f代表两个直角边上的长度,而我们想要找的是斜边的长度,即从相机到像素点的实际距离。在这种情况下,+1代表了这个直角三角形斜边计算中的垂直边(即相机到图像平面的距离),它是一个常数,因为在透视投影中,所有的像素点都是从相同的焦点投影到图像平面上的。+1在这里同时确保了对于所有像素,即使在图像中心(x=cx,y=cy)也能正确处理深度值。
- 最后用已知的深度z比上这个比例得到正交投影下的深度值。
相关文章:
 
pythonJax小记(五):python: 使用Jax深度图像(正交投影和透视投影之间的转换)(持续更新,评论区可以补充)
python: 使用Jax深度图像(正交投影和透视投影之间的转换) 前言问题描述1. 透视投影2. 正交投影 直接上代码解释1. compute_projection_parameters 函数a. 参数解释b. 函数计算 2. ortho_to_persp 函数a. 计算投影参数:b. 生成像素坐标网格&am…...
 
web安全学习笔记【16】——信息打点(6)
信息打点-语言框架&开发组件&FastJson&Shiro&Log4j&SpringBoot等[1] #知识点: 1、业务资产-应用类型分类 2、Web单域名获取-接口查询 3、Web子域名获取-解析枚举 4、Web架构资产-平台指纹识别 ------------------------------------ 1、开源-C…...
 
145.二叉树的后序遍历
// 定义一个名为Solution的类,用于解决二叉树的后序遍历问题 class Solution { // 定义一个公共方法,输入是一个二叉树的根节点,返回一个包含后序遍历结果的整数列表 public List<Integer> postorderTraversal(TreeNode root) { /…...
ssh远程连接免密码访问
我们在远程登录的时候,经常需要输入密码,密码往往比较复杂,输入比较耗费时间,这种情况下可以使用ssh免密码登录。 一般的教程是需要生成ssh密钥后,然后把密钥复制到server端完成配置,这里提供一个简单的方…...
Vue-Json-Schema-Form: 如何基于模板定制前端页面
本人从事的是工业物联网, 面对工业设备的通讯难题是各大设备都有各自的通讯协议, 如果想要用一款硬件去和所有设备做通讯的话, 就得面对怎么把自己想要采集的配置下发给自己的采集器的问题, 以前都是采用各种模型去尝试构建配置项, 但是因为配置可能会有深层次嵌套, 而且…...
保存Json对象到数据库
文章目录 背景实现方式1. 直接以 Json 对象保存到数据库2. 以 String 类型保存到数据库 背景 项目过程中可能需要保存 Json 对象到数据库中。 实现方式 有两种实现方式,一种是直接保存 Json 对象到数据库,这种方式在创建实体类以及编写 Mapper XML 脚本…...
 
《Docker 简易速速上手小册》第3章 Dockerfile 与镜像构建(2024 最新版)
文章目录 3.1 编写 Dockerfile3.1.1 重点基础知识3.1.2 重点案例:创建简单 Python 应用的 Docker 镜像3.1.3 拓展案例 1:Dockerfile 优化3.1.4 拓展案例 2:多阶段构建 3.2 构建流程深入解析3.2.1 重点基础知识3.2.2 重点案例:构建…...
 
【Python笔记-设计模式】适配器模式
一、说明 适配器模式是一种结构型模式,它使接口不兼容的对象能够相互合作 (一) 解决问题 主要解决接口不兼容问题 (二) 使用场景 当系统需要使用现有的类,但类的接口不符合需求时当需要一个统一的输出接口,但输入类型不可预知时当需要创…...
 
二分算法(c++版)
二分的本质是什么? 很多人会认为单调性是二分的本质,但其实其本质并非单调性,只是说,有单调性的可以进行二分,但是有些题目没有单调性我们也可以进行二分。其本质其实是一个边界问题,给定一个条件…...
 
【C#】用于基于 UV DLP 的 3D 打印机的切片软件源码解析(一)DLP原理 GUI
0. 原理 基于 UV DLP 的 3D 打印机的工作原理是这样的: UV DLP 是一种使用数字光处理(Digital Light Processing)技术的 3D 打印方法,它利用紫外光(UV)来固化液态树脂,从而形成实体物体。UV DLP…...
 
Javase补充-Arrays类的常用方法汇总
文章目录 一 . 排序方法二 . 查找方法三 . 判断是否相等的方法四 . 拷贝方法五 . 填充方法 一 . 排序方法 我们第一个要介绍的就是sort方法 这个排序实现的底层逻辑应该是十分复杂的,以我们目前的水平体系应该无法理解,我们今天尝试用我们可以理解的一种排序算法,插入排序来模…...
微信小程序-人脸检测-眨眼驱动ESP32蓝牙设备灯
前面2篇文章已经写了具体的人脸检测和蓝牙 这里直接结合,只列js 代码,剩下的其他代码在另外文章里面 https://blog.csdn.net/walle167/article/details/136261993 https://blog.csdn.net/walle167/article/details/136261919 上代码 import bleBehavior …...
 
怎么在wifi中实现手机和电脑文件互传
有时我们想手机电脑文件互传,数据线却不在身边,这时我们可以用MiXplorer来实现wifi中手机和电脑互相访问文件。 MiXplorer是一款来自著名安卓开发者论坛XDA的作品,免费且功能强大,被很多人誉为是“全能文件管理器”。 1.在手机上…...
 
07 STL 简介
目录 什么是STLSTL的版本STL的六大组件STL的重要性如何学习STLSTL的缺陷 1. 什么是STL c标准库的重要组成部分,不仅是一个可复用的组件库,而且是一个包罗数据结构和算法的软件框架 2. STL的版本 原始版本 Alexander Stepanov、Meng Lee在惠普实验室的…...
unity学习(39)——创建(create)角色脚本(panel)——静态(static)
1.发现一个非常实用的功能,点击unity中console的输出项,可以直接跳转到vs的代码页! 2.static类(变量)有三个特点: (1)独一份(2)无法实例化。(3&…...
 
MacOS环境下用powerline配置Terminal终端
Powerline 简介及安装配置 Powerline 是一个 stateless 状态栏,也就是一个全局状态/提示栏。你可以将其配置到你的 bash、Terminal、iTerm2 或 VIM 中,效果会如下所示: 你的 Mac 终端提示栏将会呈现如下图所示: 你的 VIM 状态…...
 
liunx单机项目部署
文章目录 1.liunx简介2.liunx的jdk安装2.liunx的tomcat安装3.liunx的mysql安装4.单机项目部署 1.liunx简介 Linux,一般指GNU/Linux(单独的Linux内核并不可直接使用,一般搭配GNU套件,故得此称呼),是一种免费…...
 
SQL 中如何实现多表关联查询?
阅读本文之前请参阅----MySQL 数据库安装教程详解(linux系统和windows系统) 在SQL中,多表关联查询是通过使用JOIN操作来实现的,它允许你从两个或多个表中根据相关列的值来检索数据。以下是几种常见的JOIN类型: …...
oracle 设置权限 禁止删除用户
在Oracle中,可以通过修改系统角色来控制用户的操作权限。要禁止删除用户,需要将DROP USER这个特定的系统权限从相应的角色中移除。 下面是一种常见的方法,使用SQL语句进行操作: -- 创建新的角色,并为其分配所有必要的…...
 
港科夜闻|香港科大计划建立北部都会区卫星校园完善科大创新带,发展未来创新科技 未来医药发展及跨学科教育...
关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、香港科大计划建立北部都会区卫星校园完善“科大创新带”,发展未来创新科技、未来医药发展及跨学科教育。香港科大校长叶玉如教授在2月22日的媒体会议上表示,香港科大将在北部都会区建立卫星校园&a…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
 
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
 
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
 
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
 
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
