数据结构-二分搜索树(Binary Search Tree)
一,简单了解二分搜索树
树结构:

问题:为什么要创造这种数据结构
1,树结构本身是一种天然的组织结构,就好像我们的文件夹一样,一层一层的.

2,树结构可以更高效的处理问题
二,二分搜索树的基础
1、二叉树


2,二叉树的重要特性
满二叉树

总结:
1. 叶子结点出现在二叉树的最底层,除叶子结点之外的其它结点都有两个孩子结点。
2. 一个层数为k 的满二叉树总结点数为:
3. 第i层上的结点数为:
4. 一个层数为k的满二叉树的叶子结点个数(也就是最后一层):
4、二叉树不一定是“满”的

3,二分搜索树


(注意:存储的元素必须具有可比性)
1,向二分搜索树添加元素

2,向二分搜索树查询操作
1,递归终止的条件 : if(node == null ) return false;
2,递归操作
if (ele.compareTo(node.ele) < 0) {
return search(node.left, ele);
} else if (ele.compareTo(node.ele) > 0) {
return search(node.right, ele);
} else {
return true;
}
3,二分搜索树的遍历操作
遍历操作:把树中所有节点都访问一遍
1前序遍历,
2中序遍历,
3后序遍历
4层序遍历(广度优先)
(代码,会在后面一起展现.)
4,二分搜索树寻找最大值,最小值
同样的原理找出二分搜素树中最大的元素,这里不在过多赘述.
5,删除操作
情况一:(叶子结点)

情况二、(非叶子结点)

删除后
6,删除二分搜索树中的节点
情况一:

情况二、

情况三:左右孩子都不为空的情况
使用Hibbard Deletion

三,用代码实现二分搜索树.实现相关功能.
(由于功能实现较多,代码较长)
其中包含是前面的各种功能操作的实现,包括,前,中,后,层,序把遍历,删除,添加,等等操作.需要的同学可以仔细查看.
mport java.nio.channels.Pipe;
import java.util.*;
import java.util.stream.Collectors;// 二分搜索树
public class BinarySearchTree<T extends Comparable<T>> {// 定义树的结点public class Node {T val;Node left; // 左孩子Node right; // 右孩子public Node(T val) {this.val = val;}}// 定义树的根private Node root;// 树根// 统计树中结点的个数private int size;// 树中结点的个数public BinarySearchTree() {this.root = null;this.size = 0;}// 判断树是否为空public boolean isEmpty() {return this.size == 0;}// 获取树中元素的个数public int getSize() {return this.size;}// 向树中添加元素public void add(T val) {this.size++;this.root = add(this.root, val);}/*** 添加的递归方法** @param node 树的根结点* @param val 添加的值*/private Node add(Node node, T val) {//递归终止的条件if (node == null) {Node leafNode = new Node(val);return leafNode;}// 递归操作if (node.val.compareTo(val) > 0) {node.left = add(node.left, val);} else {node.right = add(node.right, val);}return node;}// 将树中所有结点进行遍历--中序遍历( 深度优先搜索 DFS,使用的栈来实现)public String middleTravel() {List<T> result = new ArrayList<>();middleTravel(this.root, result);return result.stream().map(item -> item.toString()).collect(Collectors.joining(","));}/*** 中序遍历** @param node 树的根结点*/private void middleTravel(Node node, List<T> result) {// 递归终止的条件if (node == null) {return;}// 递归操作// 先遍历左子树middleTravel(node.left, result);// 打印当前值result.add(node.val);// 再遍历右子树middleTravel(node.right, result);}public String beforeTravel() {List<T> result = new ArrayList<>();beforeTravel(this.root, result);return result.stream().map(item -> item.toString()).collect(Collectors.joining(","));}/*** 前序遍历** @param node 树的根结点*/private void beforeTravel(Node node, List<T> result) {// 递归终止的条件if (node == null) {return;}// 递归操作// 打印当前值result.add(node.val);// 先遍历左子树beforeTravel(node.left, result);// 再遍历右子树beforeTravel(node.right, result);}public String afterTravel() {List<T> result = new ArrayList<>();afterTravel(this.root, result);return result.stream().map(item -> item.toString()).collect(Collectors.joining(","));}/*** 后序遍历** @param node 树的根结点*/private void afterTravel(Node node, List<T> result) {// 递归终止的条件if (node == null) {return;}// 递归操作// 先遍历左子树afterTravel(node.left, result);// 再遍历右子树afterTravel(node.right, result);// 打印当前值result.add(node.val);}// 查找的方法public boolean contains(T val) {return contains(this.root, val);}/*** 从以node为根的二分搜索树中查找元素val** @param node 根节点* @param val 要搜索的值* @return*/private boolean contains(Node node, T val) {// 递归到底的情况if (node == null) {return false;}// 递归操作if (node.val.compareTo(val) == 0) {return true;} else if (node.val.compareTo(val) > 0) {return contains(node.left, val);} else {return contains(node.right, val);}}// 树的层序遍历(广度优先搜索 BFS,使用队列来实现)public String levelTravel() {List<String> list = new ArrayList<>();// 1、 创建一个队列Queue<AbstractMap.SimpleEntry<Integer, Node>> queue = new LinkedList<>();// 2、将根结点入入队if (this.root != null) {queue.offer(new AbstractMap.SimpleEntry<>(1, this.root));}// 3、遍历队列while (!queue.isEmpty()) {AbstractMap.SimpleEntry<Integer, Node> temp = queue.poll();Node value = temp.getValue();int key = temp.getKey();//3-1 先将内容保存list.add(value.val.toString() + "------" + key);// 3-2 判断左子树是否为空,不为空就入队if (value.left != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.left));}// 3-3 判断右子树是否为空,不为空就入队if (value.right != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.right));}}return list.stream().collect(Collectors.joining(","));}public List<List<T>> levelOrder() {// 返回值类型是啥,就创建啥List<List<T>> result = new ArrayList<>();// 1、 创建一个队列Queue<AbstractMap.SimpleEntry<Integer, Node>> queue = new LinkedList<>();// 2、将根结点入入队if (this.root != null) {queue.offer(new AbstractMap.SimpleEntry<>(1, this.root));}while (!queue.isEmpty()) {AbstractMap.SimpleEntry<Integer, Node> temp = queue.poll();Node value = temp.getValue();int key = temp.getKey();//3-1 先将内容保存if(result.get(key-1)==null){result.add(new ArrayList<>());}result.get(key-1).add(value.val);// 3-2 判断左子树是否为空,不为空就入队if (value.left != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.left));}// 3-3 判断右子树是否为空,不为空就入队if (value.right != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.right));}}return result;}// Pair对public class Pair<Node> {private Node value; // 保存值private int key; // 保存层public Pair(Node value, int key) {this.value = value;this.key = key;}public Node getValue() {return value;}public int getKey() {return key;}}// 从二分搜索树中找最小值(在整棵树的最左边)public T getMinVal() {// 判断树是否为空if (this.root == null) {return null;}Node curNode = this.root;while (curNode.left != null) {curNode = curNode.left;}return curNode.val;}public T getMinValDG() {// 判断树是否为空if (this.root == null) {return null;}return getMinValDG(this.root).val;}/*** 从以node为根的二分搜索树中查找最小值** @param node 树的根节点*/private Node getMinValDG(Node node) {//递归终止的条件if (node.left == null) {return node;}// 递归操作return getMinValDG(node.left);}// 从二分搜索树中找最 大值(在整棵树的最右边)public T getMaxVal() {// 判断树是否为空if (this.root == null) {return null;}Node curNode = this.root;while (curNode.right != null) {curNode = curNode.right;}return curNode.val;}public T getMaxValDG() {// 判断树是否为空if (this.root == null) {return null;}return getMaxValDG(this.root).val;}private Node getMaxValDG(Node node) {//递归终止的条件if (node.right == null) {return node;}// 递归操作return getMinValDG(node.right);}// 从以this.root为根的二分搜索树中删除最小的结点public void removeMinNode() {if (this.root == null) {return;}this.root = removeMinNode(this.root);}/*** 从以node为根的二分搜索树中删除最小的节点** @param node 树的根节点* @return 删除之后的树的根节点*/private Node removeMinNode(Node node) {// 递归终止的条件if (node.left == null) {this.size--;return node.right;}// 递归操作node.left = removeMinNode(node.left);return node;}// 删除操作public void remove(T val) {if (!contains(val)) {return;}this.root = remove(this.root, val);}/*** 从以node为根的二分搜索树中删除元素val的节点** @param node 树的根节点* @param val 删除的值* @return*/private Node remove(Node node, T val) {// 递归终止的条件if (node == null) {return null;}if (node.val.compareTo(val) == 0) {// 更新sizethis.size--;if (node.right == null) {//1、右子树为空return node.left;} else if (node.left == null) {//2、左子树为空return node.right;} else {// 3、左右子树都不为空// 3-1 找到删除节点的后继Node suffixNode = getMinValDG(node.right);// 3-2 更新suffixNode的左右子树
// suffixNode.right = removeMinNode(node.right);suffixNode.right = remove(node.right, getMinValDG(node.right).val);suffixNode.left = node.left;this.size++;// 3-3 返回suffixNodereturn suffixNode;}}// 递归操作if (node.val.compareTo(val) > 0) {node.left = remove(node.left, val);} else {node.right = remove(node.right, val);}return node;}}
相关文章:
数据结构-二分搜索树(Binary Search Tree)
一,简单了解二分搜索树 树结构: 问题:为什么要创造这种数据结构 1,树结构本身是一种天然的组织结构,就好像我们的文件夹一样,一层一层的. 2,树结构可以更高效的处理问题 二,二分搜索树的基础 1、二叉树 2,二叉树的重要特性 满二叉树 总结: 1. 叶子结点出现在二叉树的最…...
YOLO如何训练自己的模型
目录 步骤 一、打标签 二、数据集 三、跑train代码出模型 四、跑detect代码出结果 五、详细操作 步骤 一、打标签 (1)在终端 pip install labelimg (2)在终端输入labelimg打开 如何打标签: 推荐文章…...
05 EXTI外部中断
一、中断系统 中断系统:管理和执行中断的逻辑结构。中断:在主程序运行过程中,出现了特定的中断触发条件——中断源,使得CPU暂停当前正在运行的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继…...
2024.2.23
1.1.1 信号默认、捕获、忽略处理(普通信号) #include <myhead.h> void handler(int signo) {if(signoSIGINT){printf("用户键入 ctrlc\n");} } int main(int argc, const char *argv[]) {//忽略信号if(signal(SIGINT,SIG_IGN)SIG_ERR){perror("signal er…...
PHP实现分离金额和其他内容便于统计计算
得到的结果可以粘贴到excel计算 <?php if($_GET["x"] "cha"){ $tips isset($_POST[tips]) ? $_POST[tips] : ; $pattern /(\d\.\d|\d)/; $result preg_replace($pattern, "\t\${1}\t", $tips); echo "<h2><strong>数…...
基础数据结构和算法《》
递归 1.递归应该一种比较常见的实现一些特殊代码逻辑时需要做的,但常常也是最绕的一种方式,在解释递归 之前,我们用循环和递归来做个比较1.1.如果你打开一扇门后,同样发现前方也有一扇们,紧接着你又打开下一扇门...直…...
[设计模式Java实现附plantuml源码~行为型]对象间的联动~观察者模式
前言: 为什么之前写过Golang 版的设计模式,还在重新写Java 版? 答:因为对于我而言,当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言,更适合用于学习设计模式。 为什么类图要附上uml 因为很…...
vue3+js 实现记住密码功能
常见的几种实现方式 1 基于spring security 的remember me 功能 localStorage 除非主动清除localStorage 里的信息 ,不然永远存在,关闭浏览器之后下次启动仍然存在 存放数据大小一般为5M 不与服务器进行交互通信 cookies 可以…...
基于单片机的太阳能电池板自动跟踪系统的研究
摘要 伴随着人类社会的发展,人口基数越来越大,电量消耗巨大,传统发电原 料污染环境的同时,可用量日益减少,给人类未来生产生活带来了一定的威胁, 因而解决日益剧增的用电量,寻求一种新能源显得极其重要。论文正是基于此 背景下,针对当前太阳能电池板采光率低、自动化水…...
React 模态框的设计(二)
自定义组件是每个前端开发者必备的技能。我们在使用现有框架时难免有一些超乎框架以处的特别的需求,比如关于弹窗,每个应用都会用到,但是有时我们使用的框架中提供的弹窗功能也是功能有限,无法满足我们的应用需求,今天…...
操作符详解3
✨✨ 欢迎大家来到莉莉的博文✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 前面我们已经讲过算术操作符、赋值操作符、逻辑操作符、条件操作符和部分的单目操作 符,今天继续介绍一部分。 目录 1.操作符的分类 2…...
【C语言基础】:操作符详解(一)
文章目录 操作符详解1. 操作符的分类2. 二进制和进制转换2.1 什么是二进制、八进制、十进制、十六进制2.1.1 二进制和进制转换2.1.2 二进制转十进制2.2.3 二进制转八进制2.2.4 二进制转十六进制 3. 源码、反码、补码4. 移位操作符4.1 左移操作符4.2 右移操作符 5. 位操作符&…...
通俗易懂分析:Vite和Webpack的区别
1、对项目构建的理解 先从浏览器出发, 浏览器是由浏览器内核和JS引擎组成;浏览器内核编译解析html代码和css代码,js引擎编译解析JavaScript代码;所以从本质上,浏览器只能识别运行JavaScript、CSS、HTML代码。 而我们在…...
OpenCart程序结构与业务逻辑
一、程序业务逻辑说明 在 OpenCart 中,index.php 文件是整个应用程序的入口文件,它负责初始化应用程序并调度请求。以下是 index.php 文件加载执行的流程: 1. **设置路径常量:** - index.php 首先定义了一些重要的路径常量&…...
软件License授权原理
软件License授权原理 你知道License是如何防止别人破解的吗?本文将介绍License的生成原理,理解了License的授权原理你不但可以防止别人破解你的License,你甚至可以研究别人的License找到它们的漏洞。喜欢本文的朋友建议收藏+关注,方便以后复习查阅。 什么是License? 在…...
C/C++实现老鼠走迷宫
老鼠形象可以辨认,可以用上下左右操纵老鼠;正确检测结果,若老鼠在规定的时间内走到粮仓,提示成功,否则提示失败。代码分为3个文件:main.cpp、play.h、play.cpp。 main.cpp: #include <iostream> #include <…...
[Linux]文件基础-如何管理文件
回顾C语言之 - 文件如何被写入 fopen fwrite fread fclose fseek … 这一系列函数都是C语言中对文件进行的操作: int main() {FILE* fpfopen("text","w");char str[20]"write into text";fputs(str,fp);fclose(fp);return 0; }而上…...
bat 查找文件所在
脚本 在批处理文件(.bat)中查找文件所在的目录,你可以使用dir命令结合循环和条件语句来实现。以下是一个简单的示例,演示如何在批处理文件中查找指定文件并输出其所在目录: echo off setlocal enabledelayedexpansio…...
程序员的守护神:为何电脑永不熄灭?
在这个信息时代,程序员成了推动社会进步的“隐形英雄”。他们通宵达旦,手指在键盘上跳跃,创造出一个个令人惊叹的数字世界。有趣的是,你可能注意到了一个现象:程序员似乎总是不关电脑。这并非他们对电脑上瘾࿰…...
Kafka快速实战以及基本原理详解
Kafka快速实战以及基本原理详解 基本概念 Kafka是一个分布式、支持分区、多副本,基于ZK的分布式消息系统,最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如Hadoop的批处理系统、低延迟的实时系统、Storm/Spark流式处理引擎、日…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...

