pytorch建模的三种方式
# 可以使用以下3种方式构建模型: # # 1,继承nn.Module基类构建自定义模型。 # # 2,使用nn.Sequential按层顺序构建模型。 # # 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。 # # 其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。
# 一、继承nn.Module基类构建自定义模型
from torch import nn
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.dropout = nn.Dropout2d(p = 0.1)self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))self.flatten = nn.Flatten()self.linear1 = nn.Linear(64,32)self.relu = nn.ReLU()self.linear2 = nn.Linear(32,1)def forward(self,x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.dropout(x)x = self.adaptive_pool(x)x = self.flatten(x)x = self.linear1(x)x = self.relu(x)y = self.linear2(x)return y
net = Net()
print(net)
#查看参数
from torchkeras import summary
summary(net,input_shape= (3,32,32));
# 二、使用nn.Sequential按层顺序构建模型 # 利用add_module方法
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
print(net)
# 利用变长参数
net = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1)
)
print(net)
# 三、继承nn.Module基类构建模型并辅助应用模型容器进行封装 # nn.Sequential作为模型容器
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)))self.dense = nn.Sequential(nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1))def forward(self,x):x = self.conv(x)y = self.dense(x)return y
net = Net()
print(net)
# nn.ModuleList作为模型容器 # 注意下面中的ModuleList不能用Python中的列表代替。(即不用省略)
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers = nn.ModuleList([nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1)])def forward(self,x):for layer in self.layers:x = layer(x)return x
net = Net()
print(net)
# nn.ModuleDict作为模型容器
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),"pool": nn.MaxPool2d(kernel_size = 2,stride = 2),"conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),"dropout": nn.Dropout2d(p = 0.1),"adaptive":nn.AdaptiveMaxPool2d((1,1)),"flatten": nn.Flatten(),"linear1": nn.Linear(64,32),"relu":nn.ReLU(),"linear2": nn.Linear(32,1)})def forward(self,x):layers = ["conv1","pool","conv2","pool","dropout","adaptive","flatten","linear1","relu","linear2","sigmoid"]for layer in layers:x = self.layers_dict[layer](x) # 只找有的 sigmoid是没有的return x
net = Net()
print(net)
相关文章:
pytorch建模的三种方式
# 可以使用以下3种方式构建模型: # # 1,继承nn.Module基类构建自定义模型。 # # 2,使用nn.Sequential按层顺序构建模型。 # # 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict…...
GO-ICP的使用(一)
一、代码下载以、修改以及使用 下载: 链接:yangjiaolong/Go-ICP: Implementation of the Go-ICP algorithm for globally optimal 3D pointset registration (github.com) 解压之后 : 首先visual studio项目,配置好PCL环境&…...
FPS游戏漫谈System.GC.Collect()强制进行垃圾回收
在Unity中,System.GC.Collect()用于强制进行垃圾回收,但是它是一个相当耗时的操作,可能会导致游戏的帧率下降,甚至出现卡顿。因此,你应该尽量避免在游戏的主循环中频繁调用它。以下是一些关于在Unity中使用System.GC.C…...
第3集《灵峰宗论导读》
《灵峰宗论》导读。诸位法师,诸位同学,阿弥陀佛!(阿弥陀佛!) 请大家打开讲义第5面,悟道。 这一科我们是说明论主略史,在这一科当中,我们根据弘一大师所编的《蕅益大师年…...
java面试设计模式篇
面试专题-设计模式 前言 在平时的开发中,涉及到设计模式的有两块内容,第一个是我们平时使用的框架(比如spring、mybatis等),第二个是我们自己开发业务使用的设计模式。 面试官一般比较关心的是你在开发过程中&#…...
桥接模式:解耦抽象与实现,实现灵活多变的扩展结构
文章目录 一、引言二、应用场景与技术背景三、模式定义与实现四、实例详解五、优缺点分析总结: 一、引言 桥接模式是一种结构型设计模式,它将抽象部分与它的实现部分分离,使它们可以独立变化。这种模式通过创建一个抽象层和实现层的结构&…...
HUAWEI Programming Contest 2024(AtCoder Beginner Contest 342)
D - Square Pair 题目大意 给一长为的数组,问有多少对,两者相乘为非负整数完全平方数 解题思路 一个数除以其能整除的最大的完全平方数,看前面有多少个与其余数相同的数,两者乘积满足条件(已经是完全平方数的部分无…...
Heap sorting
堆排序比较特殊,采用数组表示堆。 先将数组表示成大根堆或者小根堆。然后从堆中依次取根,最后形成有序序列。 #include<bits/stdc.h> using namespace std;const int N 1e5 10; int a[N];void bigheap(int* a, int start, int len) {if(start …...
开源模型应用落地-qwen2模型小试-入门篇(六)
一、前言 经过前五篇“qwen模型小试”文章的学习,我们已经熟练掌握qwen大模型的使用。然而,就在前几天开源社区又发布了qwen1.5版本,它是qwen2模型的测试版本。在基于transformers的使用方式上有较大的调整,现在,我们赶紧跟上脚步,去体验一下新版本模型的推理质量。 二、…...
c#程序,oracle使用Devart驱动解决第第三方库是us7ascii,数据乱码的问题
最近做项目,要跟对方系统的库进行读写,结果发现对方采用的是oracle的us7ascii编码,我们系统默认采用的是ZHS16GBK,导致我们客户端读取和写入对方库的数据都是乱码,搜索网上,发现需要采用独立的oracle驱动去…...
代码随想录算法训练营第四一天 | 背包问题
目录 背包问题01背包二维dp数组01背包一维 dp 数组(滚动数组)分割等和子集 LeetCode 背包问题 01背包 有n件物品和一个最多能背重量为 w 的背包,第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次&#x…...
AIDL的工作原理与使用示例 跨进程通信 远程方法调用RPC
AIDL的介绍与使用 AIDL(Android Interface Definition Language)是Android中用于定义客户端和服务端之间通信接口的一种接口定义语言。它允许你定义客户端和服务的通信协议,用于在不同的进程间或同一进程的不同组件间进行数据传递。AIDL通过…...
K8S部署Java项目 pod报错 logs日志内容:no main manifest attribute, in app.jar
天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...
SQL实现模糊查询的四种方法总结
目录 一、一般模糊查询 二、利用通配符查询 1. _ 表示任意的单个字符 2. % 表示匹配任意多个任意字符 3. [ ]表示筛选范围 4. 查询包含通配符的字符串 一、一般模糊查询 1. 单条件查询 //查询所有姓名包含“张”的记录select * from student where name like 张 2. 多条…...
爬虫基本库的使用(urllib库的详细解析)
学习爬虫,其基本的操作便是模拟浏览器向服务器发出请求,那么我们需要从哪个地方做起呢?请求需要我们自己构造吗? 我们需要关心请求这个数据结构怎么实现吗? 需要了解 HTTP、TCP、IP层的网络传输通信吗? 需要知道服务器如何响应以及响应的原理吗? 可…...
【PyQt5桌面应用开发】3.Qt Designer快速入门(控件详解)
一、Qt Designer简介 Qt Designer是PyQt程序UI界面的实现工具,可以帮助我们快速开发 PyQt 程序的速度。它生成的 UI 界面是一个后缀为 .ui 的文件,可以通过 pyiuc 转换为 .py 文件。 Qt Designer工具使用简单,可以通过拖拽和点击完成复杂界面…...
react useMemo 用法
1,useCallback 的功能完全可以由 useMemo 所取代,如果你想通过使用 useMemo 返回一个记忆函数也是完全可以的。 usecallback(fn,inputs)is equivalent to useMemo(()> fn, inputs). 区别是:useCallback不会执行第一个参数函数,而是将它返…...
python学习笔记 - 标准库函数
概述 为了方便程序员快速编写Python脚本程序,Python提供了很多好用的功能模块,它们内置于Python系统,也称为内置函数(Built-in Functions,BlF),Python 内置函数是 Python 解释器提供的一组函数,无需额外导…...
校招失败后,在小公司熬了 2 年终于进了字节跳动,竭尽全力....
其实两年前校招的时候就往字节投了一次简历,结果很明显凉了,随后这个理想就被暂时放下了,但是这个种子一直埋在心里这两年除了工作以外,也会坚持写博客,也因此结识了很多优秀的小伙伴,从他们身上学到了特别…...
PYTHON-使用正则表达式进行模式匹配
目录 Python 正则表达式Finding Patterns of Text Without Regular ExpressionsFinding Patterns of Text with Regular ExpressionsCreating Regex ObjectsMatching Regex ObjectsReview of Regular Expression MatchingMore Pattern Matching with Regular ExpressionsGroupi…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
