2.23C语言学习
P1480 A/B Problem
高精度数除以非高精度数
#include<bits/stdc++.h>
long long b[66660],c[66660],sum=0;
char a[66660];
int n;
int main(){scanf("%s",a);scanf("%d",&n);int len=strlen(a);for(int i=1;i<=len;i++){b[i]=a[i-1]-'0';}for(int i=1;i<=len;i++){c[i]=(b[i]+sum*10)/n;sum=(b[i]+sum*10)%n;}int flag=1;while(c[flag]==0&&flag<len)flag++;for(int i=flag;i<=len;i++){printf("%lld",c[i]);}return 0;
}
P1109 学生分组
如果总人数在范围内,就不用输出-1
我们先用一个数组存下每个组的初始人数
那么,只有人数小于下限或大于上限才要调整 所有组多出来的人数和所有组缺的人数分别记成x、y x、y中更大的那个调到在范围内的组和范围外的组 所以,输出x、y中多的那个就可以了
#include<bits/stdc++.h>
using namespace std;
int main(){int n,a[60],sum=0;scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%d",&a[i]);sum+=a[i];}int left,right,suma=0,sumb=0;scanf("%d %d",&left,&right);for(int i=1;i<=n;i++){if(a[i]<left){suma+=left-a[i];}else if(a[i]>right){sumb+=a[i]-right;}}if(sum<n*left||sum>n*right){printf("-1");return 0;}int ans=max(suma,sumb);printf("%d",ans);return 0;
}
P2708 硬币翻转
当这一个硬币与下一个硬币不同时,这一个硬币连同它之前的硬币一起翻转
翻转至与下一个硬币相同的一面
直到将所有硬币翻转到同一面
但这里还有一个点要注意:
题目要求所有硬币正面朝上,也就是所有面都是'1'的情况,才算完成
我们就再把全部硬币翻转一次
那么这道题就好解决了
#include<bits/stdc++.h>
using namespace std;
int main(){string str;cin>>str;int cnt=0;for(int i=0;i<str.size()-1;i++){if(str[i]!=str[i+1])cnt++;}if(str[str.size()-1]=='0')cnt++;printf("%d",cnt);return 0;
}
P1421 小玉买文具
水题,会写hello world都会写这个
#include<bits/stdc++.h>
using namespace std;
int main(){int x,y;cin>>x>>y;int sum=x*10+y;int nunm=sum/19;cout<<nunm;return 0;
}
P1060 [NOIP2006 普及组] 开心的金明
01背包问题,对着模板来就行了
#include<bits/stdc++.h>
using namespace std;
int w[31],s[31],dp[30009];
int main(){int n,m;scanf("%d %d",&m,&n);for(int i=1;i<=n;i++){scanf("%d %d",&w[i],&s[i]);}for(int i=1;i<=n;i++){for(int j=m;j>=w[i];j--){dp[j]=max(dp[j],dp[j-w[i]]+w[i]*s[i]);}}cout<<dp[m];return 0;
}
B3849 [GESP样题 三级] 进制转换
经典的精致转换,这里也是把我的板子献上
#include <bits/stdc++.h>
using namespace std;
int main()
{int a, b, cnt = 0;char arr[320] = { 0 };scanf("%d %d",&a,&b);while (a > 0) {int c = a % b;if (c > 9) {arr[cnt++] = (char)(c + 55);}else {arr[cnt++] = (char)(c + 48);}a /= b;}for (int j = cnt - 1; j >= 0; j--){cout << arr[j];}return 0;
}
相关文章:
2.23C语言学习
P1480 A/B Problem 高精度数除以非高精度数 #include<bits/stdc.h> long long b[66660],c[66660],sum0; char a[66660]; int n; int main(){scanf("%s",a);scanf("%d",&n);int lenstrlen(a);for(int i1;i<len;i){b[i]a[i-1]-0;}for(int i1;…...
origin/master master
这里实际上有三件事:origin master是两件事,origin/master一件事。共计三件事。 两个分支: master 是一个本地分支 origin/master是远程分支(它是名为“origin” 的远程分支的本地副本,名为“master”) 一个…...
【数据结构】时间复杂度与空间复杂度
目录 时间复杂度 空间复杂度 时间复杂度 算法的时间复杂度并不是指一个代码运行时间的快慢,因为在不同机器上运行的时间肯定不同,因此算法的时间复杂度指的是基本操作的执行次数,他是一个数学意义上的函数。这个函数并不是C语言中那种函数&…...
分别使用js与jquery写 单击按钮时出现内容 点击删除按钮不会再向下出现
HTML部分 <body><button id"btn">单击我</button><button id"delAll">删除所有事件</button><div id"test"></div> </bady>jQuery代码 <script type"text/JavaScript" src"…...
【Git】Git命令的学习与总结
本文实践于 Learn Git Branching 这个有趣的 Git 学习网站。在该网站,可以使用 show command 命令展示所有可用命令。你也可以直接访问网站的sandbox,自由发挥。 一、本地篇 基础篇 git commit git commit将暂存区(staging areaÿ…...
前端工程化面试题 | 18.精选前端工程化高频面试题
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...
大公司的工程师是怎么废掉的...
大家好,我是砖一。 此文作者以嵌入式工程师为基本视角,细说了从初阶到高阶工程师的资质需求,并提示工程师职业道路上的陷阱。可供参考。 一,基础知识 一个嵌入式工程师,很多都是从51单片机或者STM32单片机开始&…...
将yolov8权重文件转为onnx格式并在c#中使用
yolo模型转ONNX 在yolov8中,我们将训练结果的.pt权重文件转换为onnx格式只需要使用ultralytics库中的YOLO类,使用pip安装ultralytics库,然后执行下面python代码 from ultralytics import YOLO# 加载YOLOv8模型 model YOLO("best.pt&q…...
在Spring Boot启动时禁止自动配置数据源相关的组件、@SpringBootApplication
一、SpringBootApplication(exclude {DataSourceAutoConfiguration.class})注解 在Spring Boot启动时禁止自动配置数据源相关的组件。 SpringBootApplication(exclude {DataSourceAutoConfiguration.class})注解的使用案例 这个注解通常应该写在微服务项目的主启动类上&…...
程序人生:不积跬步无以致千里
程序人生 癸卯年冬月,往渭南韩城,拜访司马迁祠。入门攀爬而上,至人有困乏之时,抬头现:高山仰止。归路下山,始现三官洞,遥想西汉时三官洞,出口处刻意再拜别:高山仰止。泪…...
通过二叉树例题深入理解递归问题
目录 引入: 例1:二叉树的前序遍历: 例2: N叉树的前序遍历: 例3:二叉树的最大深度: 例4:二叉树的最小深度 例5:N叉树的最大深度: 例6:左叶子…...
【Android 协程常见用法】
我们这里只讲解一下,协程在Android项目中常见用法,原理知识不在进行说明了。 依赖 lifecycleScope只能在Activity、Fragment中使用,会绑定Activity和Fragment的生命周期。依赖库: implementation androidx.lifecycle:lifecycle…...
python 进程笔记一 (概念+示例代码)
1. 进程的概念 进程是资源分配的最小单位,也是线程的容器,线程(python 线程 (概念示例代码))是CPU调度的基本单位,一个进程包括多个线程。 程序:例如xxx.py是一个程序 进程…...
各中间件数据库默认访问端口总结
说明 在生态丰富的开发环境下,我们常常需要接触很多中间件产品,中间件默认的连接端口以及可视化ui访问端口也时不时的需要用到,这里循序渐进做好登记,以备查阅! 中间件/数据库名称默认端口管理台端口默认账号密码rabbi…...
鲲鹏arm64架构下安装KubeSphere
鲲鹏arm64架构下安装KubeSphere 官方参考文档: https://kubesphere.io/zh/docs/quick-start/minimal-kubesphere-on-k8s/ 在Kubernetes基础上最小化安装 KubeSphere 前提条件 官方参考文档: https://kubesphere.io/zh/docs/installing-on-kubernetes/introduction/prerequi…...
python 函数-02-返回值注释格式
01 函数返回值 1)python中函数可以没有返回值,也可以有通过return的方式 – 【特殊性,区别于java c#等】 2)返回值可以是一个或者多个,多个时通过逗号隔开 – 【特殊性,区别于java c#等】 3)多…...
【前端素材】推荐优质后台管理系统Upcube平台模板(附源码)
一、需求分析 后台管理系统在多个层次上提供了丰富的功能和细致的管理手段,帮助管理员轻松管理和控制系统的各个方面。其灵活性和可扩展性使得后台管理系统成为各种网站、应用程序和系统不可或缺的管理工具。 当我们从多个层次来详细分析后台管理系统时࿰…...
可视化 RAG 数据 — 用于检索增强生成的 EDA
原文地址:Visualize your RAG Data — EDA for Retrieval-Augmented Generation 2024 年 2 月 8 日 Github:https://github.com/Renumics/rag-demo/blob/main/notebooks/visualize_rag_tutorial.ipynb 为探索Spotlight中的数据,我们使用Pa…...
数学建模论文、代码百度网盘链接
1.[2018中国大数据年终总决赛冠军] 金融市场板块划分与轮动规律挖掘与可视化问题 2.[2019第九届MathorCup数模二等奖] 数据驱动的城市轨道交通网络优化策略 3.[2019电工杯一等奖] 露天停车场停车位的优化设计 4.[2019数学中国网络数模一等奖] 基于机器学习的保险业数字化变革…...
mysql 迁移-data目录拷贝方式
背景:从服务器进水坏掉,50多G的数据库要重新做主从,但以导入导出的方式太慢,简直是灾难性的,一夜都没好,只好想到了拷贝mysql数据文件的方式 拷贝的数据文件的前提 1.数据库版本必需一致(可以…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
