vue2与vue3的diff算法有什么区别
在 Vue 中,虚拟 DOM 是一种重要的概念,它通过将真实的 DOM 操作转化为对虚拟 DOM 的操作,从而提高应用的性能。Vue 框架在虚拟 DOM 的更新过程中采用了 Diff 算法,用于比较新旧虚拟节点树,找出需要更新的部分,并最小化 DOM 操作。Vue2 和 Vue3 在 Diff算法上有所不同,下面我们就说说这两者的具体区别。
Vue2 的 Diff 算法
Vue2 使用了一种经典的 Diff 算法,这种算法主要关注子节点的列表差异。它通过同级比较来工作,对新旧节点列表进行遍历,比较每个节点是否相同,然后根据需要进行创建、更新或移除操作。Vue2 的 Diff 算法有几个关键特性:
- 同级比较:只比较同一层级的节点,不跨层级比较。
- 双端比较:Vue2 的 Diff 算法采用双端比较策略,从列表的两端(头部和尾部)开始比较,以尽量减少节点的移动次数。
- 更新策略:当头尾比较无法匹配时,Vue2 会尝试复用旧节点,通过更新节点的属性或子节点来匹配新的虚拟节点,同时将其移动到正确的位置,以减少 DOM 操作次数。
Vue2 的 Diff 算法有一些限制,比如:
- 同级比较:不会进行跨层级的节点比较,这可能导致一些不必要的DOM操作。
- 静态节点优化:对于静态节点,Vue2在构建虚拟DOM树时会有一些优化,但在更新时,这些优化不会重复利用。
Vue3 的 Diff 算法
Vue3 引入了一个全新的编译策略和运行时优化,包括对 Diff 算法的改进。Vue3 的 Diff 算法带来了更好的性能和更少的内存消耗,主要得益于以下几点:
- 双端比较优化:Vue3继续使用了双端比较算法,但是在细节上进行了优化,比如对于相同节点的处理更加高效。
- 静态节点提升:Vue3在编译时会对静态节点进行提升,这些节点在更新时不会被重新创建,而是直接复用,大大减少了渲染成本。
- 支持碎片化(Fragment):Vue3支持碎片化,允许组件有多个根节点,这在Vue2中是不支持的。
- 区块树(Block Tree):Vue3引入了区块树概念,它可以跳过静态内容,快速定位到动态节点,减少了Diff时的比较次数。
- 编译时优化:Vue3在编译时会对模板进行静态提升,将不会变化的节点和属性提取出来,避免在每次渲染时都重新创建。这样可以减少虚拟DOM树的创建和销毁过程,提高性能。
二者性能对比
Vue3 的 Diff 算法相比 Vue2 在性能上有明显的提升。
由于 Vue3 在编译时进行了更多的优化,以及对静态节点和动态节点的处理更加高效,因此在大多数情况下,Vue3 的渲染速度会更快。此外,Vue3 的块树优化也减少了不必要的节点比较,进一步提高了性能。
结论
Vue3 的 Diff 算法在 Vue2 的基础上进行了多项优化,使得虚拟 DOM 的更新更加快速和高效。这些优化包括更高效的节点比较、静态节点提升、块树优化等,这些改进有助于减少渲染时间,提高应用的性能。
因此,对于大型应用和高性能的项目,选择 Vue3 会有更好的性能表现。
相关文章:
vue2与vue3的diff算法有什么区别
在 Vue 中,虚拟 DOM 是一种重要的概念,它通过将真实的 DOM 操作转化为对虚拟 DOM 的操作,从而提高应用的性能。Vue 框架在虚拟 DOM 的更新过程中采用了 Diff 算法,用于比较新旧虚拟节点树,找出需要更新的部分ÿ…...

ES小总结
组合查询 FunctionScoreQueryBuilder functionScoreQuery QueryBuilders.functionScoreQuery(boolQuery,new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.termQuery("isAD",true),Score…...
vue2与vue3中父子组件传参的区别
本次主要针对vue中父子组件传参所进行讲解 一、vue2和vue3父传子区别 1.vue2的父传子 1).在父组件子标签中自定义一个属性 <sonPage :子组件接收到的类名"传输的数据">子组件</sonPage> 2).在子组件中peops属性中拿到自定属性 props: {子组件接收的…...

使用vuetify实现全局v-alert消息通知
前排提示,本文为引流文,文章内容不全,更多信息前往:oldmoon.top 查看 简介 使用强大的Vuetify开发前端页面,结果发现官方没有提供简便的全局消息通知组件(像Element中的ElMessage那样)…...
CentOS 7.9上编译wireshark 3.6
工作环境是Centos 7.9,原本是通过flathub安装的wireshark,但是在gnome的application installer上升级到wireshark 4.2.3之后就运行不起来了,flatpak run org.wireshark.Wireshark启动提示缺少qt6,查了一下wireshark新版是依赖qt6的…...

初学学习408之数据结构--数据结构基本概念
初学学习408之数据结构我们先来了解一下数据结构的基本概念。 数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。 本内容来源于参考书籍《大话数据结构》与《王道数据结构》。除去书籍中的内容,作为初学者的我会尽力详细直白地介绍数据结构的…...
Java项目中必须使用本地缓存的几种情况
Java项目中必须使用本地缓存的几种情况 在Java项目的开发过程中,为了提高应用的性能和响应速度,缓存机制经常被使用。其中,本地缓存作为一种常见的缓存方式,将数据存储在应用程序的本地内存或磁盘中,以便快速访问。下…...

【鸿蒙 HarmonyOS 4.0】TypeScript开发语言
一、背景 HarmonyOS 应用的主要开发语言是 ArkTS,它由 TypeScript(简称TS)扩展而来,在继承TypeScript语法的基础上进行了一系列优化,使开发者能够以更简洁、更自然的方式开发应用。值得注意的是,TypeScrip…...

Android java基础_异常
一.异常的概念 在Java中,异常(Exception)是指程序执行过程中可能出现的不正常情况或错误。它是一个事件,它会干扰程序的正常执行流程,并可能导致程序出现错误或崩溃。 异常在Java中是以对象的形式表示的,…...

高数考研 -- 公式总结(更新中)
1. 两个重要极限 (1) lim x → 0 sin x x 1 \lim _{x \rightarrow 0} \frac{\sin x}{x}1 limx→0xsinx1, 推广形式 lim f ( x ) → 0 sin f ( x ) f ( x ) 1 \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}1 limf(x)→0f(x)sinf(x)1. (2) lim …...

详解顺序结构滑动窗口处理算法
🎀个人主页: https://zhangxiaoshu.blog.csdn.net 📢欢迎大家:关注🔍点赞👍评论📝收藏⭐️,如有错误敬请指正! 💕未来很长,值得我们全力奔赴更美好的生活&…...
Java 8中使用Stream来操作集合
Java 8中使用Stream来操作集合 在Java 8中,你可以使用Stream API来操作集合,这使得集合的处理变得更加简洁和函数式。Stream API提供了一系列的中间操作(intermediate operations)和终端操作(terminal operations&…...

MATLAB环境下一种改进的瞬时频率(IF)估计方法
相对于频率成分单一、周期性强的平稳信号来说,具有非平稳、非周期、非可积特性的非平稳信号更普遍地存在于自然界中。调频信号作为非平稳信号的一种,由于其频率时变、距离分辨率高、截获率低等特性,被广泛应用于雷达、地震勘测等领域。调频信…...
解决:selenium web browser 的版本适配问题
文章目录 解决方案:使用 webdriver manager 自动适配驱动 使用 selenium 操控浏览器的时候报错: The chromedriver version (114.0.5735.90) detected in PATH at /opt/homebrew/bin/chromedriver might not be compatible with the detected chrome ve…...
pytest.param作为pytest.mark.parametrize的参数进行调用
pytest.param:在 pytest.mark.parametrize 中可以作为一个指定的参数进行调用 获取数据库(网页端)数据,通过pytest.param包装成数据包用于pytest.mark.parametrize 中实现数据驱动调用。 import os import pytest import json fr…...

如何判断一个元素是否在可视区域中?
文章目录 一、用途二、实现方式offsetTop、scrollTopgetBoundingClientRectIntersection Observer创建观察者传入被观察者 三、案例分析参考文献 一、用途 可视区域即我们浏览网页的设备肉眼可见的区域,如下图 在日常开发中,我们经常需要判断目标元素是…...

Go Run - Go 语言中的简洁指令
原文:breadchris - 2024.02.21 也许听起来有些傻,但go run是我最喜欢的 Go 语言特性。想要运行你的代码?只需go run main.go。它是如此简单,我可以告诉母亲这个命令,她会立即理解。就像 Go 语言的大部分功能一样&…...

Spring全面精简总结
Spring两大核心功能:IOC控制反转、AOP面向切面的编程 控制反转(loC,Inversion of Control),是一个概念,是一种思想。指将传统上由程序代码直接操控的对象调用权交给容器,通过容器来实现对象的装配和管理。控制反转就是…...
低代码开发如何助力数字化企业管理系统平台构建
随着数字化时代的到来,企业对于管理系统的需求日益增长。高效的管理系统可以提高企业的运作效率,降低成本,提升竞争力。然而,传统的开发方式在应对日益复杂的管理系统需求时,显得力不从心。低代码开发作为一种新兴的开…...

ElasticSearch之零碎知识点
写在前面 本文记录es的零碎知识点,包括但不限于概念,集群方式,等。 1:词项查询 VS 全文查询 词项查询:查询的内容不做分词处理,输入的什么查询什么。 全文查询:查询的内容会做分词处理&…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...

FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...