当前位置: 首页 > news >正文

基于R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习技术应用

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。本文针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用

专题一、Meta分析的选题与检索

1 Meta分析的选题与文献检索

  1. 什么是Meta分析
  2. Meta分析的选题策略
  3. 文献检索数据库
  4. 精确检索策略,如何检索全、检索准
  5. 文献的管理与清洗,如何制定文献纳入排除标准
  6. 文献数据获取技巧
  7. 文献计量分析CiteSpace及研究热点分析

专题二、Meta分析与R语言基础

2 Meta分析的常用软件与R语言基础

  1. R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
  2. R语言基本操作
  3. R语言数据清洗方法
  4. R语言Meta分析常用包及相关插件介绍与安装

自编程计算到调用Meta包meta、metafor、dmetar、esc、metasens、metamisc、meta4diaggemtcrobvisnetmetabrms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图

专题三、R语言Meta分析与作图

3 R语言Meta分析

  1. R语言Meta分析的流程
  2. 各类meta效应值和累计效应值计算

连续资料的RR、MD与SMD

分类资料的RR和OR

  1. Meta亚组分析
  2. R语言图形可视化基础
  3. 如何用ggplot2绘制漂亮的森林图

专题四、R语言Meta回归分析

4 R语言Meta回归分析

  1. Meta回归统计分析理论及应用
  2. Meta回归和普通回归分析的异同
  3. 固定效应与随机效应分析
  4. 泡泡图(bubble)的绘制

专题五、R语言Meta诊断分析

5 R语言Meta诊断进阶

  1. Meta诊断分析(t2、I2、H2、Q等统计量)
  2. 异质性检验
  3. 敏感性分析
  4. 偏倚分析
  5. 风险分析

专题六、R语言Meta分析的不确定性

6 R语言Meta分析的不确定性

  1. 网状Meta分析
  2. 贝叶斯理论
  3. R语言贝叶斯工具StanJAGSbrms
  4. 贝叶斯Meta分析及不确定性分析

专题七、机器学习在Meta分析中的应用

7 机器学习在Meta分析中的应用

  1. 机器学习基础以及Meta机器学习的优势
  2. Meta加权随机森林(MetaForest)的使用
  3. 使用Meta机器学习对文献中的大数据进行整合
  4. 使用机器学习进行驱动因子分析

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247596398&idx=4&sn=f6edd5290bf8452af76be823174269b5&chksm=fa782653cd0faf45cc8628506969d9d89cceceb1a1ce760a93a83fbf606d5ac1d02c277b9b97&token=1220593956&lang=zh_CN&scene=21#wechat_redirect

相关文章:

基于R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习技术应用

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…...

蜘蛛蜂优化算法SWO求解不闭合MD-MTSP,可以修改旅行商个数及起点(提供MATLAB代码)

1、蜘蛛蜂优化算法SWO 蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为,具有搜索速度快,求解精度高的优势。VRPTW&#x…...

Java架构师之路六、高并发与性能优化:高并发编程、性能调优、线程池、NIO、Netty、高性能数据库等。

目录 高并发编程: 性能调优: 线程池: NIO: Netty: 高性能数据库: 上篇:Java架构师之路五、微服务:微服务架构、服务注册与发现、服务治理、服务监控、容器化等。-CSDN博客 下篇…...

MySQL-行转列,链接查询

1. 行转列 1.1 示例数据准备 create table test_9(id int,name varchar(22),course varchar(22),score decimal(18,2) ); insert into test_9 (id,name,course,score)values(1,小王,java,99); insert into test_9 (id,name,course,score)values(2,小张,java,89.2); inse…...

Linux之安装jdk,tomcat,mysql,部署项目

目录 一、操作流程 1.1安装jdk 1.2安装tomcat(加创建自启动脚本) 1.3 安装mysql 1.4部署项目 一、操作流程 首先把需要用的包放进opt文件下 1.1安装jdk 把jdk解压到/usr/local/java里 在刚刚放解压包的文件夹打开vim /etc/profile编辑器&#xff0c…...

HTMLElement.click()的回调触发踩坑

先看看以下代码 const el document.getElementById("btn") el.addEventListener("click", () > {Promise.resolve().then(() > console.log("microtask 1"));console.log("1"); }); el.addEventListener("click", (…...

mysql锁-这条sql加了哪些锁

文章目录 1、 InnoDB的三种行锁2、常见的加锁语句2.1、常见隐式加锁语句2.1、常见显示加锁语句 3、加锁的2条规则4、案例4.1、唯一索引等值查询4.2、唯一索引范围查询4.3、非唯一索引等值查询4.4、非唯一索引范围查询 InnoDB 存储引擎中的行锁的加锁规则。 1、 InnoDB的三种行锁…...

Docusaurus框架——快速搭建markdown文档站点介绍sora

文章目录 ⭐前言⭐初始化项目💖 创建项目(react-js)💖 运行项目💖 目录文件💖 创建一个jsx页面💖 创建一个md文档💖 创建一个介绍sora的文档 ⭐总结⭐结束 ⭐前言 大家好&#xff0…...

Prompt 编程的优化技巧

一、为什么要优化 一)上下文限制 目前 GPT-3.5 以及 GPT-4最大支持 16K 上下文,比如你输入超过 16k 的长文本,ChatGPT 会提示文本过大,为了避免 GPT 无法回复,需要限制 上下文在16k 以内 上下文对于 GPT 来说是非常重…...

React PureComponent 和 React.memo()区别

1 注意 ● PureComponent和memo仅作为性能优化的方式存在 ● 不要依赖它来阻止渲染,会产生BUG ● PureComponnet 和memo 都是通过对 props 值的浅比较来决定该组件是否需要更新的。 2 PureComponent 和React.memo() 区别 PureComponent 和React.memo()都是React优化…...

CentOS 7全系列免费

CentOS 7 全系列免费:桌面版、工作站版、服务器版等等………… 上文,关于CentOS 7这句话,被忽略了。 注意版本:知识产权、网络安全。...

【Spring连载】使用Spring Data访问 MongoDB----Aggregation Framework支持

【Spring连载】使用Spring Data访问 MongoDB----聚合框架支持 一、基础槪念二、投影表达式Projection Expressions三、分面分类法Faceted Classification3.1 桶Buckets3.2 多方面的聚合Multi-faceted Aggregation3.3 按计数排序Sort By Count3.4 投影表达式中的Spring表达式支持…...

【深入理解设计模式】适配器设计模式

适配器设计模式 适配器设计模式是一种结构型设计模式,用于将一个类的接口转换成客户端所期望的另一个接口,从而使得原本由于接口不兼容而不能一起工作的类能够一起工作。适配器模式通常用于以下场景: 现有接口与需求不匹配:当需要…...

ASP.NET-实现图形验证码

ASP.NET 实现图形验证码能够增强网站安全性,防止机器人攻击。通过生成随机验证码并将其绘制成图像,用户在输入验证码时增加了人机交互的难度。本文介绍了如何使用 C# 和 ASP.NET 创建一个简单而有效的图形验证码系统,包括生成随机验证码、绘制…...

解决Maven爆红以及解决 Idea 卡在 Resolving问题

关于 Idea 卡在 Resolving(前提是Maven的setting.xml中配置好了阿里云和仓库) 参考文章https://blog.csdn.net/jiangyu1013/article/details/95042611 解决Maven爆红参考文章https://devpress.csdn.net/beijing/656d993b76f0791b6eca7bb0.html?dp_toke…...

MySQL集群 双主架构(配置命令)

CSDN 成就一亿技术人&#xff01; 今天刚开学第一天给大家分享一期&#xff1a;MySQL集群双主的配置需求和命令 CSDN 成就一亿技术人&#xff01; 神秘泣男子主页&#xff1a;作者首页 <———— MySQL专栏 &#xff1a;MySQL数据库专栏<———— MySQL双主是一…...

网络安全之安全事件监测

随着人们对技术和智能互联网设备依赖程度的提高&#xff0c;网络安全的重要性也在不断提升。因此&#xff0c;我们需要不断加强网络安全意识和措施&#xff0c;确保网络环境的安全和稳定。 网络安全的重要性包含以下几点&#xff1a; 1、保护数据安全&#xff1a;数据是组织和…...

【BUG 记录】MyBatis-Plus 处理枚举字段和 JSON 字段

【BUG 记录】MyBatis-Plus 处理枚举字段和JSON字段 一、枚举字段&#xff08;mysql环境已测、postgresql环境已测&#xff09;1.1 场景1.2 定义枚举常量1.3 配置枚举处理器1.4 测试 二、JSON字段&#xff08;mysql环境已测&#xff09;2.1 导包2.2 使用对象接受2.3 测试 三、JS…...

Web性能优化-详细讲解与实用方法-MDN文档学习笔记

Web性能优化 查看更多学习笔记&#xff1a;GitHub&#xff1a;LoveEmiliaForever MDN中文官网 性能优良的网站能够提高访问者留存和用户满意度&#xff0c;减少客户端和服务器之间传输的数据量可降低各方的成本 不同的业务目标和用户需求需要不同的性能度量&#xff0c;要提高…...

组态王连接施耐德M580PLC

组态王连接施耐德M580 网络架构 网线连接PLC和装组态王软件的PC组态设置帮助 可先查看帮助&#xff1a;菜单栏点击【帮助】->【驱动帮助】&#xff0c;在弹出窗口中PLC系列选择莫迪康PLC的“modbusRtu\ASSCII\TCP”查看组态配置流程&#xff1a; 相关说明&#xff1a; 1、…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...