2024-02-26(金融AI行业概览与大数据生态圈)
1.最开始的风控是怎么做的?
人审
吃业务经验
不能大批量处理,效率低下
不适用于移动互联网的金融场景
2.建模的概念
建模就是构造一个数学公式,能将我们手上有的数据输入进去,通过计算得到一些预测结果。
比如初高中学习的线性回归,就是最简单的建模过程。
风控模型最原始的思路就是输入一个用户的信息,得到这个人是“会还钱”还是“不会还钱”。这是个二分类问题。
而评分卡模型其实就是希望能将一系列的个人信息输入模型,然后得到一个用户的还款概率。概率越大,评分越高,越容易还钱。概率越小,评分越低,越容易跑路。典型例子就是芝麻信用分。
3.为什么一定要映射成某种分数呢?
我们可以随时根据业务需求调整通过率。
更容易向用户解释他的信用评级。
更容易向领导解释一个用户被拒绝的原因。
更容易监控一个模型的效果。
4.风控的流程
风控的角度来看,一般可以分为以下几个部分:
数据采集、反欺诈、策略、模型、催收。
数据采集:
数据采集会涉及到埋点和爬中技术,基本上业的数据都大同小异,免费的运营商数据、和安卓可爬的手机内部信息app名称,手机设备信息,部分app内容信息)、以及收费的征信数据、各种信息校验、外部黑名单之类的。还有一些特定场景的现金贷和消费金融会有自有的数据可供使用,比如阿里京东自己的电商数据、滴滴的司机数据、顺丰中通的快递数据等等。
反欺诈引擎:
反欺诈引肇主要包括两个部分,反欺诈规则和反欺诈模型,这里其实很少使用传统监督模型。涉及到的算法以无监督算法、社交网络算法、深度学习居多。大部分的公司都使用的是反欺诈规则,这也是主要提倡的。一个原因是欺诈标签不好得到,很难做监督学习的训练。还有一个原因是传统的机器学习对欺诈的检测果很差。因为所谓欺诈,就是一些黑产或者个人将自己包装成信用良好的用户,进行借款后失联或者拒不还钱,既然都伪装成了好客户,基于风控人员主观思考建立的统计模型,又怎么可能有好的效果,但是经过一段时间的实验,这一块其实用深度学习反而有意想不到的效果,基本思想可以理解为,简单评分卡解释性强,带来的坏处就是可以被逆向破解,而复杂模型的黑箱操作虽然解释性差,却有一定的安全性,尤其是搭配了在线学习等动态手段之后。反向破解的成本极高。此外还有很多算法诸如异常检测和知识图谱都在这一块有所应用。
规则引擎:
规则擎其实就是我们常说的策略,主要通过数据分析、挖掘手段以及一些监督、无监督算法,得到不同字段、各个区间的坏账率 (badrate) ,找到最佳分段区间,然后得到筛选后信用较好的一批特定人群进行放款。这一块主要有单变量分析和一些关键指标的计算和监控,比Rorate、PSI、KS、AUC,等等。通常规则和模型是组合使用的,尤其在反欺诈场景中。
风控模型:
风控模型是机器学习在风控领域的主要体现。当然前面提到的反欺诈模型也是重点之一,主要是通过监督算法构建违约概率预测模型。但是因为实际业务中,是数据的质量并不是永远那么完美,这里通常我们会使用到深度学习、无监督、弱监督等等方法去辅助 传统监督学习算法。
风控模型其中包含了A/B/C卡,模型算法之间可以没有显著区别,而是根据其发生的时间点不同而进行划分的(货前/贷中/贷后),也就是y产生的方式不一样。通常信贷领域都是用逾期天数来定义。A卡可以用客户历史逾期天数最大的天数。B卡则可以多期借款中逾期最大的一次。C卡因为用途不同有不同的建立方法。比如你们公司有内催,有外催。外催肯定是回款率低,单价贵的。那么就可以根据是否被内催催回来定义y。
催收:
催收是风控的最终手段,这个环节可以产生很多对模型有帮助的数据。比如懂收记录的文字描述、触达率、欺诈标签等等。并且坏账的客户会被列入黑名单。其实只要是能被惟回来的,都不是坏账,但是很多公司为了保险起见,逾期超过一定时间的客户,即使被懂回来,也会被拉入黑名单。这里主要的算法就是催收模型相关的,可能是监督、无监督算法。也有基于社交网络算法构造的失联模型等等。
相关文章:
2024-02-26(金融AI行业概览与大数据生态圈)
1.最开始的风控是怎么做的? 人审 吃业务经验 不能大批量处理,效率低下 不适用于移动互联网的金融场景 2.建模的概念 建模就是构造一个数学公式,能将我们手上有的数据输入进去,通过计算得到一些预测结果。 比如初高中学习的…...
git忽略某些文件(夹)更改说明
概述 在项目中,常有需要忽略的文件、文件夹提交到代码仓库中,在此做个笔录。 一、在项目根目录内新建文本文件,并重命名为.gitignore,该文件语法如下 # 以#开始的行,被视为注释. # 忽略掉所有文件名是 a.txt的文件. a.txt # 忽略所有生成的 java文件, *.java # a.j…...
python爬虫实战:获取电子邮件和联系人信息
引言 在数字时代,电子邮件和联系人信息成为了许多企业和个人重要的资源,在本文中,我们将探讨如何使用Python爬虫从网页中提取电子邮件和联系人信息,并附上示例代码。 目录 引言 二、准备工作 你可以使用以下命令来安装这些库&a…...
post请求同时上传文件并传递其他参数的前后端写法
最近有一需求,post请求从前端上传一个文件同时传递一个参数,多次实验后记录下两种写法: 方法一: 前端:重点是设置请求头代码如下: getfile(event) {//input框输入文件let file event.target.files[0];l…...
【数仓】基本概念、知识普及、核心技术
一、数仓基本概念 数仓的定义: 数据仓库(Data Warehouse,简称DW或DWH)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。简言之,它是一个大型存储库,用于存储来…...
ky10-server docker 离线安装包、离线安装
离线安装脚本 # ---------------离线安装docker------------------- rpm -Uvh --force --nodeps *.rpm# 修改docker拉取源为国内 rm -rf /etc/docker mkdir -p /etc/docker touch /etc/docker/daemon.json cat >/etc/docker/daemon.json<<EOF{"registry-mirro…...
Linux的gdb调试
文章目录 一、编译有调试信息的目标文件二、启动gdb调试文件1、查看内容list/l:l 文件名:行号/函数名,l 行号/函数名2、打断点b:b文件名:行号/函数名,b 行号/函数名 与 查看断点info/i:info b3、删除断点d:…...
IO多路复用-select模型
IO多路复用(IO Multiplexing)是一种高效的网络编程模型,可以同时监控多个文件描述符(包括套接字等),并在有数据可读或可写时进行通知。其中,select模型是最常用和最早引入的一种IO多路复用模型。…...
班级事务管理系统设计与实现
** 🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅** 一 、设计说明 1.1 选题…...
金三银四面试必问:Redis真的是单线程吗?
文章目录 01 Redis中的多线程1)redis-server:2)jemalloc_bg_thd3)bio_xxx: 02 I/O多线程03 Redis中的多进程04 结论▼延伸阅读 由面试题“Redis是否为单线程”引发的思考 作者:李乐 来源:IT阅读…...
notejs+nvm+angular+typescript.js环境 Hertzbeat 配置
D:\Program Files\nodejs\ D:\Users\Administrator\AppData\Roaming\nvm nvm命令提示 nvm arch:显示node是运行在32位还是64位。 nvm install <version> [arch] :安装node, version是特定版本也可以是最新稳定版本latest。 可选参…...
docker安装单机版canal和使用
说明:我安装的组件架构如下: 1、准备一台虚拟机,192.168.2.223,我安装的时候,docker只支持canal1.1.6版本,1.1.7无法使用docker安装.还有一点要补充,就是1.1.6好像不支持es8.0以上版本&#x…...
qt_xml文件
文章内容 简单介绍xml文件的增删改查写生成和读取xml文件的例子增删改查 Qt提供了QDomDocument类来操作XML文件。 增加节点: QDomElement root = doc.createElement("root"); doc.appendChild(root);QDomElement element = doc.createElement("element"…...
【DAY05 软考中级备考笔记】线性表,栈和队列,串数组矩阵和广义表
线性表,栈和队列,串数组矩阵和广义表 2月28日 – 天气:阴转晴 时隔好几天没有学习了,今天补上。明天发工资,开心😄 1. 线性表 1.1 线性表的结构 首先线性表的结构分为物理结构和逻辑结构 物理结构按照实…...
AutoGen Studio助力打造私人GPTs
微软最近在开源项目里的确挺能整活儿啊! 这次我介绍的是AutoGen Studio,我认为这个项目把AutoGen可用性又拔高了一个层次的项目 项目给自己的定义是交互式的多Agent workflow 项目地址:autogen/samples/apps/autogen-studio at main microsoft/autogen (github.com) 首先我…...
SpringBoot 自定义映射规则resultMap association一对一
介绍 例:学生表,班级表,希望在查询学生的时候一起返回该学生的班级,而一个实体类封装的是一个表,如需要多表查询就需要自定义映射。 表结构 班级表 学生表 SQL语句 SELECT a.id,a.name,a.classes,b.id classes…...
华东地区汽车相关夹具配套企业分布图,你了解多少?
1、华东地区 上海汽车整车厂众多,大多以设计研发为主,注重技术和造型,这与他们的整体风格息息相关。 作为与国际接轨的特大城市,中国的经济、交通、科技、工业、金融、贸易、会展和航运中心,聚集了大量的设计和研发人…...
SpringBoot - 后端数据返回前端各个数据类型全局格式化
全局配置 import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.SerializationFeature; import com.fasterxml.jackson.databind.module.SimpleModule; import com.fasterxml.j…...
实验室记账项目(java+Mysql+jdbc)
前言: 因为自己学习能力有限和特殊情况必须要找一个项目来做,但是上网搜的那些项目有两种(一种是技术太多,自己能力不够;一种是技术太少,项目太简单)导致都不适合本人,本人现有技术只…...
spring boot 整合 minio存储 【使用篇】
zi导入依赖 <!--minio--><dependency><groupId>io.minio</groupId><artifactId>minio</artifactId><version>8.0.3</version></dependency> yml配置(默认配置) spring:# 配置文件上传大小限制s…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
