神经网络系列---权重初始化方法
文章目录
- 权重初始化方法
- Xavier初始化(Xavier initialization)
- Kaiming初始化,也称为He初始化
- LeCun 初始化
- 正态分布与均匀分布
- Orthogonal Initialization
- Sparse Initialization
- n_in和n_out
- 代码实现
权重初始化方法
Xavier初始化(Xavier initialization)
是一种用于初始化神经网络权重的方法,也称为Glorot初始化。更有效地传播信号并减少梯度消失或梯度爆炸的问题。适用于激活函数为tanh或sigmoid的情况。
Xavier初始化的计算方法如下:
- Glorot(或 Xavier)初始化:
- 适用于激活函数如sigmoid和tanh。
- 初始化公式: σ = 2 n in + n out \sigma = \sqrt{\frac{2}{n_{\text{in}} + n_{\text{out}}}} σ=nin+nout2
其中, n in n_{\text{in}} nin 是输入单元数, n out n_{\text{out}} nout 是输出单元数。
对于单个神经元的权重w
,从均匀分布
或正态分布
中随机采样,具体取决于所选择的激活函数:
- 如果使用
tanh激活函数
,从均匀分布
采样:- 采样范围:
[-sqrt(6 / (n_in + n_out)), sqrt(6 / (n_in + n_out))]
- 其中
n_in
是上一层的输入节点数量,n_out
是当前层的输出节点数量。
- 采样范围:
- 如果使用
sigmoid激活函数
,从正态分布
采样:- 均值:0
- 方差:
sqrt(2 / (n_in + n_out))
- 其中n_in是上一层的输入节点数量,n_out是当前层的输出节点数量。
Kaiming初始化,也称为He初始化
- He 初始化:
- 适用于ReLU及其变种(如LeakyReLU)激活函数。
- 初始化公式: σ = 2 n in \sigma = \sqrt{\frac{2}{n_{\text{in}}}} σ=nin2
这种初始化方法主要用于修正线性单元(Rectified Linear Units,ReLU)激活函数的神经网络。
与Xavier初始化适用于tanh和sigmoid等S型激活函数不同,Kaiming初始化专门针对ReLU激活函数
的特性进行优化。ReLU是一个常用的非线性激活函数,它在输入大于零时保持不变,在输入小于等于零时输出为零。
Kaiming初始化的计算方法如下:
对于单个神经元的权重w,从均匀分布或正态分布中随机采样,具体取决于所选择的激活函数:
-
如果使用
ReLU激活函数
,从正态分布
采样:- 均值:0
- 方差:
sqrt(2 / n_in)
- 其中n_in是上一层的输入节点数量。
-
对于带有ReLU激活的卷积层,可以使用相同的初始化方法,只是需要考虑卷积层的输入通道数量(即n_in)。
LeCun 初始化
- 适用于Sigmoid激活函数。
- 初始化公式: σ = 1 n in \sigma = \sqrt{\frac{1}{n_{\text{in}}}} σ=nin1
正态分布与均匀分布
- 使用较小的标准差(如0.01)从正态分布中采样权重。
- 使用较小的范围(如-0.01到0.01)从均匀分布中采样权重。
Orthogonal Initialization
- 使用正交矩阵初始化权重。这种初始化方法对于某些任务和模型架构可能很有益。
Sparse Initialization
- 将大部分权重初始化为0,只初始化一小部分非零的权重。
n_in和n_out
n_in
和n_out
分别表示神经网络层的输入节点数量和输出节点数量。这些节点也称为神经元,它们是网络的基本组成部分。
-
n_in:代表上一层(前一层)的节点数量,也就是当前层的输入数量。在神经网络中,每个神经元都会接收来自上一层所有节点的输入,这些输入被加权和后传递给当前神经元的激活函数。因此,n_in指的是上一层与当前层之间的连接数量。
-
n_out:代表当前层的节点数量,也就是当前层的输出数量。每个神经元会将经过激活函数处理后的结果传递给下一层所有节点,形成下一层的输入。因此,n_out指的是当前层与下一层之间的连接数量。
代码实现
#include <iostream>
#include <Eigen/Dense>
#include <random>
#include <cmath>Eigen::MatrixXd glorotInitialize(int rows, int cols);
Eigen::MatrixXd heInitialize(int rows, int cols);
Eigen::MatrixXd lecunInitialize(int rows, int cols);
Eigen::MatrixXd normalDistributionInitialize(int rows, int cols, double std_dev=0.01);
Eigen::MatrixXd uniformDistributionInitialize(int rows, int cols, double limit=0.01);
Eigen::MatrixXd orthogonalInitialize(int rows, int cols);
// Sparse Initialization需要额外参数来确定稀疏度,这里我们使用一个简化版本,指定一个非零的权重数。
Eigen::MatrixXd sparseInitialize(int rows, int cols, int nonZeroCount);//1. **Glorot (Xavier) Initialization**:Eigen::MatrixXd glorotInitialize(int rows, int cols) {std::random_device rd;std::mt19937 gen(rd());double limit = sqrt(6.0 / (rows + cols));std::uniform_real_distribution<> dis(-limit, limit);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//**He Initialization**:Eigen::MatrixXd heInitialize(int rows, int cols) {std::random_device rd;std::mt19937 gen(rd());double std_dev = sqrt(2.0 / rows);std::normal_distribution<> dis(0, std_dev);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//3. **LeCun Initialization**:Eigen::MatrixXd lecunInitialize(int rows, int cols) {std::random_device rd;std::mt19937 gen(rd());double std_dev = sqrt(1.0 / rows);std::normal_distribution<> dis(0, std_dev);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//4. **Normal Distribution Initialization**:Eigen::MatrixXd normalDistributionInitialize(int rows, int cols, double std_dev) {std::random_device rd;std::mt19937 gen(rd());std::normal_distribution<> dis(0, std_dev);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//5. **Uniform Distribution Initialization**:Eigen::MatrixXd uniformDistributionInitialize(int rows, int cols, double limit) {std::random_device rd;std::mt19937 gen(rd());std::uniform_real_distribution<> dis(-limit, limit);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//6. **Orthogonal Initialization**:
Eigen::MatrixXd orthogonalInitialize(int rows, int cols) {// 创建一个随机矩阵std::random_device rd;std::mt19937 gen(rd());std::normal_distribution<> dis(0, 1);Eigen::MatrixXd randomMatrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {randomMatrix(i, j) = dis(gen);}}// 使用QR分解获得正交矩阵Eigen::HouseholderQR<Eigen::MatrixXd> qr(randomMatrix);Eigen::MatrixXd orthogonalMatrix = qr.householderQ();// 如果您需要一个具有特定维度的正交矩阵(例如rows != cols),您可以选择一个子矩阵return orthogonalMatrix.block(0, 0, rows, cols);
}//7. **Sparse Initialization**:Eigen::MatrixXd sparseInitialize(int rows, int cols, int nonZeroCount) {Eigen::MatrixXd matrix = Eigen::MatrixXd::Zero(rows, cols);std::random_device rd;std::mt19937 gen(rd());std::uniform_real_distribution<> dis(-1, 1);for(int i = 0; i < nonZeroCount; i++) {int r = rand() % rows;int c = rand() % cols;matrix(r, c) = dis(gen);}return matrix;
}
int main() {int rows = 5;int cols = 5;// Glorot InitializationEigen::MatrixXd weights_glorot = glorotInitialize(rows, cols);std::cout << "Glorot Initialized Weights:" << std::endl << weights_glorot << std::endl << std::endl;// He InitializationEigen::MatrixXd weights_he = heInitialize(rows, cols);std::cout << "He Initialized Weights:" << std::endl << weights_he << std::endl << std::endl;// LeCun InitializationEigen::MatrixXd weights_lecun = lecunInitialize(rows, cols);std::cout << "LeCun Initialized Weights:" << std::endl << weights_lecun << std::endl << std::endl;// Normal Distribution InitializationEigen::MatrixXd weights_normal = normalDistributionInitialize(rows, cols);std::cout << "Normal Distribution Initialized Weights:" << std::endl << weights_normal << std::endl << std::endl;// Uniform Distribution InitializationEigen::MatrixXd weights_uniform = uniformDistributionInitialize(rows, cols);std::cout << "Uniform Distribution Initialized Weights:" << std::endl << weights_uniform << std::endl << std::endl;// Sparse Initializationint nonZeroCount = 10; // As an example, set 10 weights to non-zero valuesEigen::MatrixXd weights_sparse = sparseInitialize(rows, cols, nonZeroCount);std::cout << "Sparse Initialized Weights with " << nonZeroCount << " non-zero values:" << std::endl << weights_sparse << std::endl;return 0;
}
相关文章:

神经网络系列---权重初始化方法
文章目录 权重初始化方法Xavier初始化(Xavier initialization)Kaiming初始化,也称为He初始化LeCun 初始化正态分布与均匀分布Orthogonal InitializationSparse Initializationn_in和n_out代码实现 权重初始化方法 Xavier初始化(X…...

【重要公告】BSV区块链协会宣布将启动多项动态安全增强措施
发表时间:2024年2月16日 2024年2月16日,瑞士楚格 - BSV区块链协议的管理机构BSV区块链协会(以下简称“BSV协会”)宣布对其运营模式实施全新的安全架构,其中包括引入网络访问规则和数字资产找回协议,以及…...
软件设计模式之访问者模式(Visitor Pattern)
访问者模式是一种行为型设计模式,它允许你定义一系列操作,这些操作可以应用于对象结构中的元素,而不改变这些元素的类。通过这种方式,可以在不改变各个元素的类的情况下,增加新的操作。 1. 何时使用访问者模式&#x…...

【MySQL】主从同步原理、分库分表
主从同步原理 1. 主从同步原理 MySQL 经常先把命令拷入硬盘的日志,再执行日志的命令,这样的好处: 日志的位置固定,拷入硬盘的开销不大;将命令先准备好,而不是边读边执行,性能更好,…...
uniapp如何实现关闭前面指定数目页面
需求 : 路由从 页面A -> 页面B-> 页面C-> 页面D 我希望在 页面C跳到页面CD 后 在页面D 中 点击返回(物理键或是代码返回),直接返回到A,而不是页面C 所以我需要把BC页面给销毁掉 以下是我的实现思路,在h…...

使用 Helm 安装 极狐GitLab
本篇作者 徐晓伟 使用 Helm 简便快捷的部署与管理 极狐GitLab 前提条件 k8s 完成 helm 的配置 k8s 完成 ingress 的配置 内存至少 10G 演示环境是 龙蜥 Anolis 8.4(即:CentOS 8.4)最小化安装k8s 版本 1.28.2calico 版本 3.26.1nginx ingre…...

K8S部署postgresql
(作者:陈玓玏) 一、前置条件 已部署k8s,服务端版本为1.21.14 二、部署postgresql 拉取镜像,docker pull postgres,不指定版本,自动从docker hub拉取最新版本;配置configmap&…...
Go 如何控制并发的goroutine数量?
为什么要控制goroutine并发的数量? 在开发过程中,如果不对goroutine加以控制而进行滥用的话,可能会导致服务整体崩溃。比如耗尽系统资源导致程序崩溃,或者CPU使用率过高导致系统忙不过来。 用什么方法控制goroutine并发的数量&a…...

【黑马程序员】1、TypeScript介绍_黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程
课程地址:【黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程】 https://www.bilibili.com/video/BV14Z4y1u7pi/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 目录 1、TypeScript介绍 1.1 TypeScript是什…...

JS进阶——深入对象
构造函数 封装是面向对象思想中比较重要的一部分,js面向对象可以通过构造函数实现的封装。 前面我们学过的构造函数方法很好用,但是 存在浪费内存的问题 原型 目标:能够利用原型对象实现方法共享 构造函数通过原型分配的函数是所有对象所…...
Gitlab部署管理
一、安装 1.docker安装gitlab sudo docker run -d \-p 6080:80 -p 6022:22 \--name gitlab \--restart always \-v /srv/gitlab/config:/etc/gitlab \-v /srv/gitlab/logs:/var/log/gitlab \-v /srv/gitlab/data:/var/opt/gitlab \gitlab/gitlab-ce:latest2.存储说明 存储应…...

MyBatis 学习(二)之 第一个 MyBatis 案例
目录 1 配置 MyBatis 方式 1.1 XML 配置文件 1.2 Java 注解配置 1.3. Java API 配置 2 在 MySQL 中创建一张表 3 创建一个基于 Maven 的 JavaWeb 工程 4 编写 User 实体类 5 创建 Mybatis 全局配置文件 6 编写一个 DAO 或 Mapper 接口 7 编写 SQL 映射配置文件&#…...
30天自制操作系统(第21天)
21.1 攻克难题——字符串显示API 显示单个字符时,用 [CS:ECX] 的方式特意指定了 CS(代码段寄存器),因此可以成功读取 msg的内容。但在显示字符串时,由于无法指定段地址,程序误以为是 DS而从完全错误的内存地…...

linux系统Jenkins的安装
Jenkins安装 安装上传安装包解压包首次登录要去服务器查看密码,更改密码选择需要安装的插件设置Admin用户和密码安装完成 安装 上传安装包 上传 jdk17 tomcat jenkins.war的安装包 . 上传 tomcat安装包解压包 解压jdk tar xf jdk-11.0.18_linux-x64_bin.tar.gz解…...
【GStreamer】basic-tutorial-1:GstBus、GstMessage详解
【目录】郭老二博文之:图像视频汇总 1、先看示例 #include <gst/gst.h>int main (int argc, char *argv[]) {GstElement *pipeline;GstBus...
Python中的可变变量与不可变变量
python中的可变与不可变变量 一、变量的三个参数 就像区分一个人一样,同样都是张三,可能这个张三就不是那个张三。同一个变量是指的什么相同呢? Python中的对象包含三个要素,id(内存地址),typ…...
OpenGL调用窗口,方向键和鼠标
9.2 OpenGL调用窗口,方向键和鼠标 9.2.1 opengl调用窗口 OpenGL调用窗口步骤: 第一步:初始化 GLFW,初始化OpenGL,初始化窗口,初始化上下文 第二步:设置窗口大小和位置,设置输入输出 第三步…...

fastAdmin表格列表的功能
更多文章,请关注:fastAdmin后台功能详解 | 夜空中最亮的星 FastAdmin是一款基于ThinkPHP5Bootstrap的极速后台开发框架。优点见开发文档 介绍 - FastAdmin框架文档 - FastAdmin开发文档 在这里上传几张优秀的快速入门图: 一张图解析FastAdmin中的表格列…...
用来检查 CUDA、Conda 和 PyTorch 的版本的python文件
提供的 Python 代码片段包括几个语句,用来检查 CUDA、Conda 和 PyTorch 的版本,以及一些与 CUDA 相关的系统配置。让我们分解一下:PyTorch 版本和配置:torch.__config__.show():显示 PyTorch 的构建配置。 torch.__ver…...
基于Redisson,实现分布式锁注解
1.原始写法 我们平常使用redisson的分布式锁是不是基本都用下面的这个模板,既然是模板,那为何不把他抽出来呢? // 尝试加锁,最多等待100秒,上锁以后10秒自动解锁 boolean res lock.tryLock(100, 10, TimeUnit.SECON…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?
在现代前端开发中,Utility-First (功能优先) CSS 框架已经成为主流。其中,Tailwind CSS 无疑是市场的领导者和标杆。然而,一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...

CMS内容管理系统的设计与实现:多站点模式的实现
在一套内容管理系统中,其实有很多站点,比如企业门户网站,产品手册,知识帮助手册等,因此会需要多个站点,甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...