矩阵理论1 集合上的等价关系(equivalence relations on a set S)
定义
对于一个集合S, 如果集合E⊂S×S\mathcal{E} \subset S\times SE⊂S×S满足以下条件
- 自反性: 对于∀s∈S,都有(s,s)∈E\forall s\in S, 都有 (s, s) \in \mathcal{E}∀s∈S,都有(s,s)∈E
- 对称性: (s,t)∈E⇔(t,s)∈E(s,t) \in \mathcal{E} \Leftrightarrow (t,s)\in \mathcal{E}(s,t)∈E⇔(t,s)∈E
- 传递性: 如果(s,t)∈E(s, t) \in \mathcal{E}(s,t)∈E 且(t,u)∈E(t, u) \in \mathcal{E}(t,u)∈E, 则(s,u)∈E(s, u)\in \mathcal{E}(s,u)∈E
如果(s,t)∈E(s, t)\in \mathcal{E}(s,t)∈E, 我们可以将这种情况记为s∼ts \sim ts∼t.
给定t∈St \in St∈S, 我们将*ttt在等价关系E\mathcal{E}E下的等价类*记为[t][t][t], 其中[t]⊂S[t]\subset S[t]⊂S ,且有
[t]={s∈S∣s∼t}[t] = \{s\in S|s\sim t\} [t]={s∈S∣s∼t}
显然t∈[t]t \in [t]t∈[t].
反过来, 如果S的某个子集[t]⊂S[t] \subset S[t]⊂S刚好是某个元素t∈St \in St∈S在等价关系E\mathcal{E}E下的等价类, 我们则称t是该集合/该等价类的表示(representative).
易知对于集合S上的某个特定的等价关系E\mathcal{E}E, 任意S中的元素都具有一个等价类. 我们将所有元素的等价类构成的集合记为[E][\mathcal{E}][E], 即
[E]={[s]∣s∈S}[\mathcal{E}] = \{[s]|s \in S\} [E]={[s]∣s∈S}
例子
ex1. 若S指地球上所有的动物个体构成的集合, 设E⊂S×S\mathcal{E} \subset S\times SE⊂S×S, 其中
(s1,s2)∈E⇔s1和s2是同一个物种(s_1, s_2) \in \mathcal{E} \Leftrightarrow s_1和s_2是同一个物种 (s1,s2)∈E⇔s1和s2是同一个物种
易知E\mathcal{E}E满足
- 自反性
- 对称性
- 传递性
所以E\mathcal{E}E为S上的一个等价关系
ex2. 令S={A,B,C}S = \{A,B,C\}S={A,B,C}, 设E⊂S×S\mathcal{E} \subset S\times SE⊂S×S, 其中
E={{A,A},{B,B},{C,C},{A,B},{B,A}}\mathcal{E} = \{\{A,A\}, \{B,B\}, \{C,C\}, \{A,B\}, \{B,A\}\} E={{A,A},{B,B},{C,C},{A,B},{B,A}}
易知E\mathcal{E}E满足
- 自反性
- 对称性
- 传递性
所以E\mathcal{E}E为S上的一个等价关系
而且, [A]=[B]={A,B},[C]={C}[A] =[B]= \{A, B\}, [C] = \{C\}[A]=[B]={A,B},[C]={C}
注意到例题2中, 在集合S上的等价关系E\mathcal{E}E下, 所有元素的等价类构成的集合[E][\mathcal{E}][E]形成了集合S的一个分划(partition).
这是一个很普遍的结论, 而且, 集合S的任一分划均可视为某种等价关系E\mathcal{E}E下的等价类集合[E][\mathcal{E}][E]. 也就是下面的命题.
命题
如果E⊂S×S\mathcal{E} \subset S\times SE⊂S×S是集合S上的一个等价关系, 则[E][\mathcal{E}][E]是集合S的一个分划. 反过来, 若P是集合S的一个分划, 则必然存在某个集合S上的等价关系E⊂S×S\mathcal{E} \subset S\times SE⊂S×S, 使得[E]=P[\mathcal{E}] = P[E]=P
相关文章:
矩阵理论1 集合上的等价关系(equivalence relations on a set S)
定义 对于一个集合S, 如果集合E⊂SS\mathcal{E} \subset S\times SE⊂SS满足以下条件 自反性: 对于∀s∈S,都有(s,s)∈E\forall s\in S, 都有 (s, s) \in \mathcal{E}∀s∈S,都有(s,s)∈E对称性: (s,t)∈E⇔(t,s)∈E(s,t) \in \mathcal{E} \Leftrightarrow (t,s)\in \mathcal…...

【网络监控】Zabbix详细安装部署(最全)
文章目录Zabbix详细安装部署环境准备安装依赖组件访问初始化配置Zabbix详细安装部署 Zabbix 是一个高度集成的网络监控解决方案,可以提供企业级的开源分布式监控解决方案,由一个国外的团队持续维护更新,软件可以自由下载使用,运作…...

阿里云轻量服务器--Docker--Nacos安装(使用外部Mysql数据存储)
前言:docker 安装nacos 如果不设置外部的mysql 默认使用内嵌的内嵌derby为数据源,这个时候如果,重新部署nacos 则会造成原有数据丢失情况; 1 默认安装的nacos 启动后使用的是内嵌的存储: 2 使用外部mysql 作为存储&a…...

unity开发知识点小结01
unity对象生命周期函数 Awake():最早调用,所以可以实现单例模式 OnEnable():组件激活后调用,在Awake后调用一次 Stat():在Update()之前,OnEnable…...
软件系统[软件工程]
What’s the link? They all involve outdated (legacy) software technology. All have had huge socio-economical impact. Prompting national lockdowns. Spreadsheet workflow error led to thousands of preventable infections and deaths. Huge losses of citizen dat…...

电力系统稳定性的定义与分类
1电力系统稳定性的定义与分类 IEEE给出电力系统稳定性定义:电力系统稳定性是指电力系统这样的一种能力—对于给定的初始运行状态,经历物理扰动后,系统能够重新获得运行平衡点的状态,同时绝大多数系统变量有界,因此整个…...

基于java的俱乐部会员管理系统
技术:Java、JSP等摘要:随着科学技术的飞速发展,科学技术在人们日常生活中的应用日益广泛,也给各行业带来发展的机遇,促使各个行业给人们提供更加优质的服务,有效提升各行业的管理水平。俱乐部通过使用一定的…...

线程池执行父子任务,导致线程死锁
前言, 一次线程池的不当使用,导致了现场出现了线程死锁,接口一直不返回。而且由于这是一个公共的线程池,其他使用了次线程池的业务也一直阻塞,系统出现了OOM,不过是幸好是线程同事测试出来的,没…...

Ubuntu系统新硬盘挂载
Ubuntu系统新硬盘挂载 服务器通常会面临存储不足的问题,大部分服务器都是ubuntu系统,该篇博客浅浅记载一下在ubuntu系统上挂载新硬盘的步骤。本篇博文仅仅记载简单挂载一块新的硬盘,而没有对硬盘进行分区啥的。如果需要更加完善的教程&#…...

【亲测】Centos7系统非管理(root)权限编译NCNN
前言 由于使用的是集群,自己不具有管理员权限,所以以下所有的情况均在非管理员权限下进行安装,即该安装策略仅适用于普通用户构建自己的环境。 什么是NCNN ncnn是一款非常高效易用的深度学习推理框架,支持各种神经网络模型&#x…...
四种常见的异步请求方式
四种常见的异步请求方式 一、xhr异步老祖 XMLHttpRequest(简称XHR)是一种在JavaScript中创建异步请求的技术。XHR对象可以向服务器发送请求,并获取服务器返回的数据,而不会使页面刷新。 XHR对象的创建方式通常是通过构造…...

Linux操作系统学习(进程间通信)
文章目录进程间通信进程通信的意义进程通信的方式1.基于文件的方式匿名管道命名管道2.基于内存的通信方式共享内存验证内核相关的数据结构了解进程间通信 进程通信的意义 当我们和另一个人打电话时两部手机都是独立的,通过基站传递信号等等复杂的过程就实现了通…...

单目标追踪——【相关滤波】C-COT原理与ECO基于C-COT的改进
目录C-COT:Continuous Convolution Operator Tracker文章侧重点连续卷积算子目标追踪框架初始化过滤器:追踪流程ECO文章侧重点因式卷积因子生成采样空间模型模型更新策略论文链接:C-COT:Beyond Correlation Filters: Learning Con…...
C++中栈是如何实现,以及常用的栈函数都有哪些
什么是栈? 栈 是一种特殊的数据结构,它是一种按照 Last-In-First-Out (LIFO) 访问模式存储和访问数据的特殊结构。 换句话说,栈中的最后一个元素将成为最先出栈的元素,这也意味着新增加的元素在栈的顶部,而出栈的元素…...

我就不信你还不懂HashSet/HashMap的底层原理
💥注💥 💗阅读本博客需备的前置知识如下💗 🌟数据结构常识🌟👉1️⃣八种数据结构快速扫盲🌟Java集合常识🌟👉2️⃣Java单列集合扫盲 ⭐️本博客知识点收录于…...

Qt中调用gtest进行单元测试及生成覆盖率报告
一.环境配置 googletest地址:https://github.com/google/googletest 我下载的是1.12.1,这是最后一个支持C++11的版本。 首先编译gtest,在windows上的编译方式和编译gRPC一模一样,详见Qt中调用gRPC,编译完了会生成几个静态库,如下图所示 本文主要用到了libgtest.a 下载ms…...

ChatGPT vs Bard 背后的技术对比分析和未来发展趋势
ChatGPT vs Bard 背后的技术对比分析和未来发展趋势 目录 ChatGPT vs Bard 背后的技术对比分析和未来发展趋势...

搜索引擎的设计与实现
技术:Java、JSP等摘要:随着互联网的快速发展,网络上的数据也随着爆炸式地增长。如何最快速筛选出对我们有用的信息成了主要问题。搜索引擎是指根据一定的策略、运用特定的计算机程序从互联网上搜集信息,在对信息进行组织和处理后&…...

动态规划之买卖股票问题
🌈🌈😄😄 欢迎来到茶色岛独家岛屿,本期将为大家揭晓动态规划之买卖股票问题 ,做好准备了么,那么开始吧。 🌲🌲🐴🐴 动态规划算法本质上就是穷举…...
MySQL学习笔记之子查询
自连接方式 自连接就是表A连接表A,通过where关键字实现,比如查询工资比Abel高的员工信息: SELECTe2.last_name,e2.salary FROMemployees e1,employees e2 WHEREe1.last_name "Abel" AND e2.salary > e1.salary;子查询 亦称为…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...