当前位置: 首页 > news >正文

【 10X summary report】怎么看?详细解读笔记

报告内容

在开始正式的分析之前,需要查看在对齐和计数过程中生成的任何总结统计信息。下图是由Cell Ranger工具创建的10X总结报告,在从10X scRNA-seq实验生成计数矩阵时会生成。

 The left half of the report describes sequencing and mapping statistics. One thing to note is the “sequencing saturation”, which estimates the proportion of mRNA transcripts that has been sequenced. This is calculated by downsampling the mean number of reads per cell and obtaining the corresponding number of UMIs (nUMI). The relationship between the number of UMIs obtained against the number of reads is then extrapolated to the asymptote, which corresponds to 100% saturation. A low sequencing saturation implies that deeper sequencing will likely recover more UMIs. That said, some preliminary analysis should first be performed to determine if the current number of UMIs recovered is able to answer the biological questions of interest. Also, check that a high percentage of reads are mapped to the genome, which indicates low amounts of contamination.

The top-right portion of the report plots the nUMI captured in each droplet / barcode, with the droplets ordered in decreasing nUMI from left to right. On the left side of the plot, droplets have very high nUMI and are likely to contain cells. As we scan through the droplets towards the right, we eventually encounter a “knee point” where there is a drastic drop in the nUMI. This likely signifies a transition from observing cell-containing droplets to droplets containing cell debris or no cells at all. Droplets that are deemed by Cell Ranger to contain cells are coloured blue here and the algorithm tends to include slightly more cells beyond the plot shoulder. These cells with smaller nUMIs will have to be removed in the quality control step.

From the summary report, there is another important observation: the nUMI does not correspond to the number of reads per cell. Recall that this is because reads with the same UMI originated from a single mRNA molecule and is thus treated as a single UMI count . Thus, the number of counts i.e. nUMI is usually only a fraction (about 1/8 to 1/3) of the number of reads.

 下图为本人使用CellRanger V5.2.0对语一个单细胞数据跑出的结果

报告解读

细胞和基因数目的评估

  1. Estimated number of cells - 样本测到的细胞数
  2. Mean reads per cell - 每个细胞测到的平均reads
  3. Median genes per cell - 每个细胞基因数的中位数

Sequencing中

Number of reads - 测到的总read数目

Valid barcodes - UMI校正后匹配的UMI数量

Sequencing saturation:测序饱和度。一般60-80%比较合适(阈值范围可以适当调整,但是高于70%或80%左右绝对OK)。如果测到的细胞数多,但是每个细胞里面的平均reads数少,那么饱和度就不高,反之,饱和度高。但也不是越高越好,背后原理是抽样的原理,到达80%左右就可以代表整个样本了。

Q30 bases in barcode - 基于barcode的分数,大于30的比率

Q30 bases in RNA read - 基于RNA read的分数,大于30的比率

Q30 bases in UMI - 基于UMI的分数,大于30的比率

认为要一般要大于65%,少于这个比例的话,这个页面会报错,

Mapping结果

  1. Reads mapped to genome - 比对到选定基因组的reads
  2. Reands mapped confidently to genome - 仅仅比对到基因组的reads,如果一条reads既可以比对到外显子区又可以比对到非外显子区,那么算比对到了其中一个外显子区
  3. Reads mapped confidently to intergenic regions - 比对到基因组的基因间区域
  4. Reads mapped confidently to intronic regions - 比对到内含子区域
  5. Reads mapped confidently to exonic regions - 比对到外显子区域
  6. Reads mapped confidently to transcriptome - 比对到转录组的reads,这些读数可以用来UMI的计数
  7. Reads mapped antisense to gene - 比对到基因的相反的reads

细胞数目评估Cells图

横轴是barcodes,纵轴是UMI数量。通过barcode上的UMI标签分布来评估细胞数目,深蓝色代表细胞,灰色代表背景。

在前期磁珠(bead)与细胞形成油包水的结构过程中,会存在没有把细胞包进去的情况,这时候的油包水结构里面就只有磁珠和一些barcode的序列,而cDNA的碱基序列一般都是barcode碱基序列的10倍以上,就是由此来确定哪些是真实的细胞,哪些是background。

其他指标

  1. Estimated number of cells - 样本测到的细胞数
  2. Fraction reads in cells - valid-UMI的质量分数,代表与细胞相关的UMI可靠地比对到基因组,一般要在70%及以上,否则数据质量就不好
  3. Mean reads per cell - 每个细胞测到的平均reads
  4. Median genes per cell - 每个细胞的基因数中位数
  5. Total genes detected - 测到的总基因数,至少有一条UMI
  6. Median UMI counts per cell - 细胞UMI数量的中间值

饱和度评估

  1. 对reads抽样,观察不同抽样条件下检测到的转录本数量占检测到的所有转录本的比例。(如果曲线末端区域平滑,说明测序接近饱和,再增加测序量,覆盖到的转录本数目也不会变化太多。)
  2. 对reads抽样,观察不同测序数据量情况下检测到的基因数目的分布。(如果曲线末端区域平滑,说明测序接近饱和,再增加测序量,检测到的基因数目也不会变化太多。)

Reference

[1] A Guide to Analyzing Single-cell Datasets, John F. Ouyang, January 2023

相关文章:

【 10X summary report】怎么看?详细解读笔记

报告内容 在开始正式的分析之前,需要查看在对齐和计数过程中生成的任何总结统计信息。下图是由Cell Ranger工具创建的10X总结报告,在从10X scRNA-seq实验生成计数矩阵时会生成。 The left half of the report describes sequencing and mapping statist…...

K8S—Pod控制器

目录 1.什么是POD控制器 2.POD控制器有几种类型 3.POD与控制器之间的关系 4.示例 4.1 Deployment 4.2 SatefulSet ①为什么要有headless? ②为什么要有volumeClainTemplate? ③服务发现:就是应用服务之间相互定位的过程。 ④K8S里服…...

LabVIEW石油钻机提升系统数字孪生技术

LabVIEW石油钻机提升系统数字孪生技术 随着数字化、信息化、智能化的发展,石油钻采过程中的石油钻机数字化技术提升成为了提高钻井效率、降低生产成本的重要途径。基于中石油云平台提供的数据,采用数字孪生技术,对石油钻机提升系统进行数字化…...

C#双向链表实现:在当前节点后插入新数据的方法Insert()

目录 1.定义一个泛型节点类并自动属性 2.定义链表类&#xff0c;并实现Append、Print、MoveFirst、 Insert 3.Main方法 1.定义一个泛型节点类并自动属性 /// <summary> /// 定义泛型节点类 /// </summary> /// <typeparam name"T">泛型运算符&…...

10-Java装饰器模式 ( Decorator Pattern )

Java装饰器模式 摘要实现范例 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其结构 装饰器模式创建了一个装饰类&#xff0c;用来包装原有的类&#xff0c;并在保持类方法签名完整性的前提下&#xff0c;提供…...

Vue.js 实用技巧:深入理解 Vue.set 方法

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

单词规律00

题目链接 单词规律 题目描述 注意点 pattern只包含小写英文字母s只包含小写英文字母和 ’ ’s不包含任何前导或尾随对空格s中每个单词都被 单个空格 分隔 解答思路 本题与上一次同构字符串类似&#xff0c;思路可以参照同构字符串 代码 class Solution {public boolean …...

vue3 vite项目一运行就401(Unauthorized)

问题&#xff1a;项目一执行&#xff1a; pnpm run dev, 启动就出错&#xff0c; Failed to load resource: the server responded with a status of 401 (Unauthorized) 分析&#xff1a; 项目之前是正常运行的&#xff0c;没有问题&#xff0c;回溯刚刚改动&#xff0c;还原…...

LeetCode102.二叉树的层序遍历

题目 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]]输入&#xff1a;root [1] 输出&am…...

Java底层自学大纲_JVM篇

JVM专题_自学大纲所属类别学习主题建议课时&#xff08;h&#xff09; A 深入理解Java虚拟机001 JVM类加载器设计原理2.5 A 深入理解Java虚拟机002 基于SPI破解双亲委派机制2.5 A 深入理解Java虚拟机003 JVM内部结构分析2.5 A 深入理解Java虚拟机004 字符串常量池原理2.5 …...

数据可视化?这些平台能处

图表在各行各业都起到举重若轻的作用&#xff0c;无论是项目汇报、业绩分析&#xff0c;亦或是数据挖掘、统计分析&#xff0c;良好的可视化可以为我们的阐述起到画龙点睛的效果。在一篇文章中&#xff0c;如果只有密密麻麻的文字堆积&#xff0c;无论是谁恐怕都无法长期保持注…...

[ai笔记14] 周鸿祎的ai公开课笔记1

欢迎来到文思源想的ai空间&#xff0c;这是技术老兵重学ai以及成长思考的第14篇分享&#xff01; 本周二月的最后一周&#xff0c;并不是闲下来了&#xff0c;反而是开始进行一些更多的深入实践&#xff0c;关于gpt的主体架构、关于prompt&#xff0c;同时也看了不少书和直播&…...

在Linux系统中创建新用户并登录

1 创建新用户&#xff08;使用 useradd 或 adduser 命令&#xff09; 使用 useradd 命令&#xff08;不带交互式选项&#xff09;创建新用户&#xff0c;同时默认会在 /home 目录下创建同名目录作为家目录&#xff1a; sudo useradd -m 新用户名在执行上述命令后&#xff0c;…...

Vue.js+SpringBoot开发高校实验室管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实验管理模块2.4 实验设备模块2.5 实验订单模块 三、系统设计3.1 用例设计3.2 数据库设计 四、系统展示五、样例代码5.1 查询实验室设备5.2 实验放号5.3 实验预定 六、免责说明 一、摘…...

文献阅读笔记《Spatial-temporal Forecasting for Regions without Observations》13页

目录 目录 目录 发行刊物 ABSTRACT 1 INTRODUCTION 2 RELATED WORK&#xff08;相关工作 2.1 Spatial-temporal Forecasting&#xff08;时空预测 2.2 Spatial-temporal Forecasting withIncomplete Data&#xff08;不完全数据的时空预测 2.3 Graph Contrastive Learn…...

如何学习openfoam

学习OpenFOAM的详细步骤、流程、学习网站、练习案例以及B站学习资源推荐如下&#xff1a; 一、详细步骤和流程 安装OpenFOAM&#xff1a;首先&#xff0c;你需要在你的计算机上安装OpenFOAM。你可以从OpenFOAM的官方网站下载适合你的操作系统的安装包&#xff0c;然后按照官方提…...

vue前端密码加密,springboot后端密码解密

1.模块安装 1 npm install crypto-js 2.src–>util–>secret.js 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 import CryptoJS from crypto-js // 默认的 KEY …...

selenuim【1】$x(‘xpath’)、WebDriverWait()、try/assert

文章目录 1、执行driver webdriver.Chrome()后很久才打开浏览器2、浏览器多元素定位 $x(‘xpath语法’)3、打开浏览器driver.get("网址")执行了很久才开始定位元素&#xff1a;等待&#xff08;1&#xff09;driver.set_page_load_timeout(t)&#xff08;2&#xff…...

机器学习模型总结

多元线性回归&#xff08;linear regression&#xff09; 自变量&#xff1a;连续型数据&#xff0c;因变量&#xff1a;连续型数据 选自&#xff1a;周志华老师《机器学习》P53-55 思想&#xff1a;残差平方和达到最小时的关系式子即为所求&#xff0c;残差平方和&#xff1a…...

HTML5:七天学会基础动画网页6

CSS3自定义字体 ①&#xff1a;首先需要下载所需字体 ②&#xff1a;把下载字体文件放入 font文件夹里&#xff0c;建议font文件夹与 css 和 image文件夹平级 ③&#xff1a;引入字体&#xff0c;可直接在html文件里用font-face引入字体&#xff0c;分别是字体名字和路径 例…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...