深度学习-Pytorch实现经典AlexNet网络:山高我为峰
深度学习-Pytorch实现经典AlexNet网络之山高我为峰
深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打开人们的视野。
用pytorch构建CNN经典网络模型AlexNet,还可以用数据进行训练模型,得到一个优化的模型。
数据分析
数据分析-Pandas如何转换产生新列
数据分析-Pandas如何统计数据概况
数据分析-Pandas如何轻松处理时间序列数据
数据分析-Pandas如何选择数据子集
数据分析-Pandas如何重塑数据表-CSDN博客
经典算法
经典算法-遗传算法的python实现
经典算法-模拟退火算法的python实现
经典算法-粒子群算法的python实现-CSDN博客
AlexNet概述
第一个典型的CNN是LeNet5网络,而第一个引领技术潮流的CNN却是AlexNet。2012年在全球知名的图像识别竞赛 ILSVRC 中,AlexNet 横空出世,直接将错误率降低了近 10 个百分点。这是断崖式的领先。当时AlexNet的影响,和现在chatGPT带来的效应相当。
网络结构
输入图像分辨率:227x227x3 通道
结构:
9层:1个输入层,5个卷积层,2个全连接层,1个输出层,因GPU内存不够,分为上下两组;
(1)C1:11x11 —>输出2组48个55×55大小的特征图–> ReLU --> LRN --> MaxPooling;
(2)C2:5x5 —>输出2组128个27×27大小的特征图–> ReLU --> LRN --> MaxPooling;
(3)C3:3x3 —>输出384个13×13大小的特征图–> ReLU;
(4)C4:3x3 —>输出2组192个13×13大小的特征图–> ReLU;
(5)C5:3x3 —>输出2组128个13×13大小的特征图–> ReLU --> MaxPooling;
(6)FC6 ----> 6x6,输入2组6x6x128特征图,输出4096个1x1全连接层–> ReLU --> Dropout;
(7)FC7 ----> 输入4096个神经元,输出4096个神经元–> ReLU --> Dropout
(8)输出层—> 输入4096个神经元–>softmax -->输出 1000分类
整个AlexNet网络包含的神经元个数为:
290400 + 186624 + 64896 + 64896 + 43264 + 4096 + 4096 + 1000 = 659272
大约65万个神经元。
整个AlexNet网络包含的参数数量为:
34944 + 307456 + 885120 + 663936 + 442624 + 37752832 + 16781312 + 4096000 = 60964224
大约6千万个参数。
优势与不足
优势:采用激活函数ReLU,局部响应归一化,使用Dropout机制,Max Pooling重叠池化,双GPU训练,图像尺寸扩大227x227x3。
Pytorch实现
以下便是使用Pytorch实现的经典网络结构AlexNet
# AlexNet 227x227x3
class AlexNet(nn.Module):def __init__(self, channels, num_classes):super(AlexNet, self).__init__()self.features = nn.Sequential(# 输入通道数为3,彩色图片# 输出96、卷积核为11x11,步长为4,是AlexNet模型结构决定nn.Conv2d(channels, 96, kernel_size=11,stride=4, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(96, 256,kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1),nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3,padding=1),nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2))# 全连接层self.classifier = nn.Sequential(# 全连接的第一层,输入卷积输出的拉平值,即6*6*256# 输出为4096nn.Linear(in_features=6*6*256,out_features=4096),nn.ReLU(),# AlexNet采取了DropOut进行正则,防止过拟合nn.Dropout(p=0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(p=0.5),# 最后一层,输出1000个类别,也是我们所说的softmax层nn.Linear(4096,num_classes))# 前向算法def forward(self,x):x = self.features(x)x = torch.flatten(x,1)result = self.classifier(x)return result
大家可以和LetNet5对照差异,也可以一窥DeepLearning技术的突破点。
在AlexNet开创一片天地后,CNN网络引领的深度学习蓬勃发展,造就人工智能技术革命的起点。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
大模型查询工具助手之股票免费查询接口
GPT实战系列-简单聊聊LangChain
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2模型的微调训练参数解读
GPT实战系列-如何用自己数据微调ChatGLM2模型训练
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
GPT实战系列-Baichuan2本地化部署实战方案
GPT实战系列-Baichuan2等大模型的计算精度与量化
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-探究GPT等大模型的文本生成-CSDN博客
相关文章:

深度学习-Pytorch实现经典AlexNet网络:山高我为峰
深度学习-Pytorch实现经典AlexNet网络之山高我为峰 深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰…...
25考研习题记录
3月 汤家凤《1800》 基础篇 日期高等数学线性代数概率论3.1 P92-93 P212-214 3.4 P10-15 P10-19 极限题62题 P73-74 P170-172 行列式17题 考研竞赛凯哥每日一题 张宇高数30讲页数3.4P74...
上海计算机学会 2023年12月月赛 丙组T4 迷宫(宽度优先搜索)
第四题:T4迷宫 标签:宽度优先搜索题意:给定 n n nx m m m由 # \# #(墙)、 . . .(空地)组成的地图,求从左上角到右下角的最少步数,每次只允许上下左右移动一格࿰…...

【Boost搜索引擎项目】Day1 项目介绍+去标签和数据清洗框架搭建
🌈欢迎来到C项目专栏 🙋🏾♀️作者介绍:前PLA队员 目前是一名普通本科大三的软件工程专业学生 🌏IP坐标:湖北武汉 🍉 目前技术栈:C/C、Linux系统编程、计算机网络、数据结构、Mysq…...
站群服务器需要多大内存
站群服务器的内存需求取决于网站的数量和流量,以及服务器需要运行的应用和服务。RAKsmart小编为您整理发布站群服务器需要多大内存以及站群服务器内存需求的考虑因素。 站群服务器是一种用于托管多个网站的服务器,通常用于搜索引擎优化(SEO)和网络内容管…...
HTB Perfection
Perfection User Namp ┌──(kali㉿kali)-[~/HTB/machine/Perfection] └─$ nmap -A 10.129.226.58 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-03-03 21:10 EST Nmap scan report for 10....

如何远程连接MySQL数据库?
在现代互联网时代,远程连接MySQL数据库成为了许多开发者和管理员必备的技能。这不仅方便了数据的共享和管理,还可以使多个团队在全球范围内协同工作。本文将介绍如何通过天联组网实现远程连接MySQL数据库,并实现高效的信息远程通信。 天联组网…...
【 HTML 及浏览器 】前端跨页面通信
前端跨页面通信:连接分散界面的纽带 在构建复杂的前端应用时,我们常常需要在不同的页面之间进行数据通信。无论是同源页面还是非同源页面,通信机制都是实现多页面数据同步和交互的关键。本文将探讨各种前端跨页面通信的方法,并提…...

内存安全的编程语言
美国政府新颁布《回归基础构件:通往安全软件之路》 《回归基础构件:通往安全软件之路》中,白宫国家网络主任办公室(ONCD)呼吁开发者使用「内存安全的编程语言」 内存安全的编程语言 根据NSA的建议,内存…...

Excel常用公式总结非常实用
16个最实用的Excel万能公式 1、多条件判断 IF(And(条件1,条件2..条件N),条件成立返回值) IF(or(条件1,条件2..条件N),条件成立返回值) 2、多条件查找 Lookup(1,0/((条件1*条件2*...条件N)),返回值区域) 3、多条件求和 Sumifs(值区域,判断区域1,条件1,判断区域2,条…...

window路径特殊字符解决
官方定义命名规范 https://learn.microsoft.com/zh-cn/windows/win32/fileio/naming-a-file 重点 1.目录规范 特殊字符以空格 与点.开头结尾 2.文件规范 特殊字符以空格 与点.开头结尾NUL、COM等文件 解决方案 字符标点符号实际上在字符集定义中有一个很有趣的现象&…...
『大模型笔记』RAG 系统开发中的12大痛点及解决方案
RAG 系统开发中的12大痛点及解决方案 文章目录 问题引入一. 痛点 1:缺失内容1.1. 数据清洗的重要性1.2. 精心设计的提示(Prompt)有助于提高准确性二. 痛点 2:关键文档被遗漏2.1. 通过调整 chunk_size 和 similarity_top_k 参数优化检索效果2.2. 检索结果的优化排序三. 痛点…...

VScode---php环境搭建
文章目录 1.下载php Dehug;php server2.下载php环境3.配置环境变量5.配置php.ini文件6.设置vscode6.测试遇到的问题 1.下载php Dehug;php server 2.下载php环境 下载地址:https://www.php.net/downloads.php 3.配置环境变量 C:\Users\hacker>php -v PHP 8.3.3 (…...

【Vue3】3-6 : 仿ElementPlus框架的el-button按钮组件实
文章目录 前言 本节内容实现需求完整代码如下: 前言 上节,我们学习了 slot插槽,组件内容的分发处理 本节内容 本小节利用前面学习的组件通信知识,来完成一个仿Element Plus框架的el-button按钮组件实现。 仿造的地址:uhttps://…...
.datastore@cyberfear.com.mkp勒索病毒的最新威胁:如何恢复您的数据?
导言: 我们享受着数字化带来的便利,但同时也要面对不断演进的网络威胁。最近出现的 .datastorecyberfear.com.mkp、[hendersoncock.li].mkp [hudsonLcock.li]、.mkp [myersairmail.cc].mkp 勒索病毒就是其中之一,它对我们的数据安全构成了…...

23.基于springboot + vue实现的前后端分离-在线旅游网站系统(项目 + 论文PPT)
项目介绍 本旅游网站系统采用的数据库是MYSQL ,使用 JSP 技术开发,在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。 技术选型 后端: SpringBoot Mybatis 数据库 : MyS…...

SpringCloud-RabbitMQ消息模型
本文深入介绍了RabbitMQ消息模型,涵盖了基本消息队列、工作消息队列、广播、路由和主题等五种常见消息模型。每种模型都具有独特的特点和适用场景,为开发者提供了灵活而强大的消息传递工具。通过这些模型,RabbitMQ实现了解耦、异步通信以及高…...

Linux网络编程 ——UDP 通信
Linux网络编程 ——UDP 通信 1. UDP1.1 UDP 通信1.2 广播1.3 组播(多播) 2. 本地套接字 1. UDP 1.1 UDP 通信 输入 man 2 sendto 查看说明文档 #include <sys/types.h> #include <sys/socket.h>ssize_t sendto(int sockfd, const void *buf…...
TDengine 签约树根互联,应对“高基数”难题
近日,树根互联与涛思数据达成签约合作,共同推动智能制造领域的建设。作为一家处于高速发展期的工业互联网企业,树根互联将新一代信息技术与制造业深度融合,开发了以自主可控的工业互联网操作系统为核心的工业互联网平台——根云平…...

实名制交友-智能匹配-仿二狗交友系统-TP6+uni-APP小程序H5公众号-源码交付-支持二开!
一、代码风格 通常不同的开发者具备不同的代码风格,但为了保证语音交友系统开发质量,在编码前需要进行代码风格的统一,通过制定一定的规则,约束开发者的行为。具有统一风格的代码才能更清晰、更完整、更容易理解、更方便后期维护…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...