当前位置: 首页 > news >正文

由数据范围反推算法复杂度以及算法内容

一般ACM或者笔试题的时间限制是1秒或2秒。
在这种情况下,C++代码中的操作次数控制在 1 0 7 ∼ 1 0 8 10^7\sim10^8 107108为最佳。

下面给出在不同数据范围下,代码的时间复杂度和算法该如何选择:

  1. n ≤ 30 n\leq30 n30,指数级别, d f s + dfs+ dfs+剪枝,状态压缩 d p dp dp
  2. n ≤ 100 ⇒ O ( n 3 ) n\leq100\rArr O(n^3) n100O(n3) f l o y d floyd floyd d p dp dp,高斯消元;
  3. n ≤ 1000 ⇒ O ( n 2 ) n\leq1000\rArr O(n^2) n1000O(n2) O ( n 2 l o g n ) O(n^2logn) O(n2logn) d p dp dp,二分,朴素版 D i j k s t r a Dijkstra Dijkstra,朴素版 P r i m Prim Prim B e l l m a n − F o r d Bellman-Ford BellmanFord
  4. n ≤ 10000 ⇒ O ( n ∗ x ) n\leq10000\rArr O(n*\sqrt{x}) n10000O(nx ),块状链表、分块、莫队;
  5. n ≤ 100000 ⇒ O ( n l o g n ) ⇒ n\leq100000\rArr O(nlogn)\rArr n100000O(nlogn),各种 s o r t sort sort,线段树、树状数组、 s e t / m a p set/map set/map h e a p heap heap、拓扑排序、 d i j k s t r a + h e a p dijkstra+heap dijkstra+heap p r i m + h e a p prim+heap prim+heap K r u s k a l Kruskal Kruskal s p f a spfa spfa、求凸包、求半平面交、二分、 C D Q CDQ CDQ分治、整体二分、后缀数组、树链剖分、动态树;
  6. n ≤ 1000000 ⇒ O ( n ) n\leq1000000\rArr O(n) n1000000O(n),以及常数较小的 O ( n l o g n ) O(nlogn) O(nlogn)算法 ⇒ \rArr 单调队列、 h a s h hash hash、双指针扫描、 B F S BFS BFS、并查集、 k m p kmp kmp A C AC AC自动机,常数比较小的 O ( n l o g n ) O(nlogn) O(nlogn)的做法: s o r t sort sort、树状数组、 h e a p heap heap d i j k s t r a dijkstra dijkstra s p f a spfa spfa
  7. n ≤ 10000000 ⇒ O ( n ) n\leq10000000\rArr O(n) n10000000O(n),双指针扫描、 k m p kmp kmp A C AC AC自动机、线性筛素数;
  8. n ≤ 1 0 9 ⇒ O ( n ) n\leq10^9\rArr O(\sqrt{n}) n109O(n ),判断质数;
  9. n ≤ 1 0 18 ⇒ O ( l o g n ) n\leq10^{18}\rArr O(logn) n1018O(logn),最大公约数,快速幂,数位DP;
  10. n ≤ 1 0 1000 ⇒ O ( ( l o g n ) 2 ) n\leq10^{1000}\rArr O((logn)^2) n101000O((logn)2),高精度加减乘除;
  11. n ≤ 1 0 100000 ⇒ O ( l o g k × l o g l o g k ) n\leq10^{100000}\rArr O(logk\times loglogk) n10100000O(logk×loglogk) k k k表示位数,高精度加减, F F T / N T T FFT/NTT FFT/NTT

相关文章:

由数据范围反推算法复杂度以及算法内容

一般ACM或者笔试题的时间限制是1秒或2秒。 在这种情况下,C代码中的操作次数控制在 1 0 7 ∼ 1 0 8 10^7\sim10^8 107∼108为最佳。 下面给出在不同数据范围下,代码的时间复杂度和算法该如何选择: n ≤ 30 n\leq30 n≤30,指数级别…...

js监听F11触发全屏事件

当用户使用 F11 键进行浏览器全屏时,由于此时并非通过浏览器提供的 Fullscreen API 进入全屏模式,因此无法通过 fullscreenchange 事件来监听全屏状态的变化。在这种情况下,可以通过监听 resize 事件来检测浏览器窗口大小的变化,从…...

Seata 2.x 系列【1】专栏导读

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列Seata 版本 2.0.0 源码地址:https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 背景2. 简介3. 适用人群4. 环境及版本5. 文章导航5…...

fly-barrage 前端弹幕库(3):滚动弹幕的设计与实现

项目官网地址:https://fly-barrage.netlify.app/; 👑🐋🎉如果感觉项目还不错的话,还请点下 star 🌟🌟🌟。 Gitee:https://gitee.com/fei_fei27/fly-barrage&a…...

Mysql面试总结

基础 1. 数据库的三范式是什么? 第一范式:强调的是列的原子性,即数据库表的每一列都是不可分割的原子数据项。第二范式:要求实体的属性完全依赖于主关键字。所谓完全 依赖是指不能存在仅依赖主关键字一部分的属性。第三范式&…...

【深圳五兴科技】Java后端面经

本文目录 写在前面试题总览1、java集合2、创建线程的方式3、对spring的理解4、Spring Boot 和传统 Spring 框架的一些区别5、springboot如何解决循环依赖6、对mybatis的理解7、缓存三兄弟8、接口响应慢的处理思路9、http的状态码 写在前面 关于这个专栏: 本专栏记录…...

画图(ccf201409-2)解题思路

解题思路 填充100*100二维数组,范围内的元素修改成1,最后累积求和。...

蓝桥杯刷题(一)

一、 import os import sys def dps(s):dp [0] * len(s)dp[0] ord(s[0]) - 96if len(s) 1:return dp[-1]dp[1] max(ord(s[0]) - 96, ord(s[1]) - 96)for i in range(2, len(s)):dp[i] max(dp[i - 1], dp[i - 2] (ord(s[i])) - 96)return dp[-1] s input() print(dps(s))…...

设计模式:策略模式 ⑥

一、策略模式思想 简介 策略模式(Strategy Pattern)属于对象的行为模式。其用意是针对一组算法,将每一个算法封装到具有共同接口的独立的类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。…...

数据结构从入门到精通——顺序表

顺序表 前言一、线性表二、顺序表2.1概念及结构2.2 接口实现2.3 数组相关面试题2.4 顺序表的问题及思考 三、顺序表具体实现代码顺序表的初始化顺序表的销毁顺序表的打印顺序表的增容顺序表的头部/尾部插入顺序表的头部/尾部删除指定位置之前插入数据和删除指定位置数据顺序表元…...

001-CSS-水平垂直居中布局

水平垂直居中布局 方案一:弹性盒子布局方案二:绝对定位 transform方案三:margin 绝对定位,四个方向为零方案四:绝对定位 margin方案五:绝对定位 calc 方案一:弹性盒子布局 💡 T…...

【[STM32]标准库-自定义BootLoader】

[STM32]标准库-自定义BootLoader BootloaderBootloader的实现BOOTloader工程APP工程 Bootloader bootloader其实就是一段启动程序,它在芯片启动的时候最先被执行,可以用来做一些硬件的初始化或者用作固件热更新,当初始化完成之后跳转到对应的…...

Spring Boot项目中不使用@RequestMapping相关注解,如何动态发布自定义URL路径

一、前言 在Spring Boot项目开发过程中,对于接口API发布URL访问路径,一般都是在类上标识RestController或者Controller注解,然后在方法上标识RequestMapping相关注解,比如:PostMapping、GetMapping注解,通…...

Vue中有哪些优化性能的方法?

Vue是一款流行的JavaScript框架,用于构建交互性强的Web应用程序。在前端开发中,性能优化是一个至关重要的方面,尤其是当应用程序规模变大时。Vue提供了许多优化性能的方法,可以帮助开发人员提升应用程序的性能,从而提升…...

Python pandas遍历行数据的2种方法

背景 pandas在数据处理过程中,除了对整列字段进行处理之外,有时还需求对每一行进行遍历,来处理每行的数据。本篇文章介绍 2 种方法,来遍历pandas 的行数据 小编环境 import sysprint(python 版本:,sys.version.spli…...

Spring之@Transactional源码解析

前言 我们在日常开发的时候经常会用到组合注解,比如:EnableTransactionManagement Transactional、EnableAsync Async、EnableAspectJAutoProxy Aspect。今天我们就来抽丝剥茧,揭开Transactional注解的神秘面纱 EnableTransactionManagement注解的作用 当我们看到类似Ena…...

第三届国际亲子游泳学术峰会,麒小佑为亲游行业提供健康解决方案

第三届国际亲子游泳学术峰会大合影 2024年2月26—28日,第三届国际亲子游泳学术峰会在中国青岛成功召开。 第三届国际亲子游泳学术峰会是中国婴幼游泳行业最高标准的学术性会议,由亲游圈主办,旨在为本行业搭建一个高端圈层,帮助机…...

Python光速入门 - Flask轻量级框架

FlASK是一个轻量级的WSGI Web应用程序框架,Flask的核心包括Werkzeug工具箱和Jinja2模板引擎,它没有默认使用的数据库或窗体验证工具,这意味着用户可以根据自己的需求选择不同的数据库和验证工具。Flask的设计理念是保持核心简单&#xff0c…...

C/C++ 说说引用这玩仍是干啥的

引用的本质就是给某个实例对象起个外号。生活中李逵&#xff0c;也叫黑旋风。诸葛亮&#xff0c;又叫孔明。 引用的方式&#xff1a; 类型& 引用名对象名 举个例子 int i0; int& ki;//这种方式就是引用----->i有了自己的小名&#xff0c;从次叫k了 std::cout<…...

swoole

php是单线程。php是靠多进程来处理任务&#xff0c;任何后端语言都可以采用多进程处理方式。如我们常用的php-fpm进程管理器。线程与协程,大小的关系是进程>线程>协程,而我们所说的swoole让php实现了多线程,其实在这里来说,就是好比让php创建了多个进程,每个进程执行一条…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...