自然语言处理 | 语言模型(LM) 浅析
自然语言处理(NLP)中的语言模型(Language Model, LM)是一种统计模型,它的目标是计算一个给定文本序列的概率分布,即对于任意给定的一段文本序列(单词序列),语言模型能够估算出这段文本在某种语言中的出现概率。以下是语言模型的核心概念、作用、挑战及应用场景的解释:
核心概念
概率计算:
在自然语言处理的语言模型中,概率计算是指模型试图量化一个特定词序列出现的可能性。比如,对于一个长度为 n 的句子 ( w_1, w_2, …, w_n ),语言模型会估算该句子作为一个整体出现在语言中的概率,记作 ( P(w_1, w_2, …, w_n) )。这意味着模型需要理解每个词与其上下文的关系,并且综合所有词之间的相互影响来得出整个序列的概率。
马尔科夫假设:
在实际应用中,直接计算一个长句子的概率是非常困难的,因为它涉及到的变量太多。马尔科夫假设简化了这一过程,其基本思想是当前状态(此处指当前词)的概率仅取决于其最近的 k 个先前状态(之前的 k 个词)。这被称为马尔科夫链。
n-gram 模型:
n-gram 是基于马尔科夫假设的具体实现方式。这里的 n 表示考虑的词的数量。
-
二元模型 (Bigram):在二元模型中,我们使用马尔科夫假设的第一阶形式,即每个词的概率仅依赖于它前面的一个词。对于词 ( w_n ),其概率可以通过条件概率的形式表达为 ( P(w_n | w_{n-1}) ),表示的是在已知前一个词 ( w_{n-1} ) 的情况下,词 ( w_n ) 出现的概率。
-
三元模型 (Trigram):在三元模型中,我们扩展到了马尔科夫假设的第二阶形式,认为词 ( w_n ) 的概率依赖于它前面两个词,即 ( P(w_n | w_{n-1}, w_{n-2}) ),表示的是在已知前两个词 ( w_{n-1} 和 w_{n-2} ) 的情况下,词 ( w_n ) 出现的概率。
以此类推,可以有四元模型(quadgram)、五元模型(pentagram)等等。然而,随着 n 增大,虽然模型能捕获更长的上下文信息,但数据稀疏性问题也随之加剧——很多可能的 n-gram 在实际语料库中并没有出现过,因此很难得到准确的概率估计。同时,高阶的 n-gram 模型在存储和计算上也会带来更大的开销。
尽管如此,n-gram 模型因其简洁性和实用性,在很多自然语言处理任务中仍被广泛应用。随着深度学习的发展,诸如循环神经网络(RNNs)和Transformer架构等更先进的模型已经可以更好地解决上述问题,能够在更复杂的上下文中估计词的概率。
特点
- 上下文敏感:好的语言模型应该能够捕捉到词汇间的上下文依赖关系,以便准确估计某个词在具体语境下的概率。
- 连续性与连贯性:确保生成或评估的文本具有良好的连贯性,即前后词之间逻辑关联紧密。
挑战
- 数据稀疏性:随着 n 的增加,n-gram 模型面临的数据稀疏性问题愈发严重,即许多较长的词组在训练集中并未出现过。
- 长距离依赖:n-gram 模型难以捕捉远距离词之间的依赖关系,这对于理解和生成复杂的语法结构十分重要。
- 泛化能力:传统统计模型的泛化能力有限,无法很好地适应未见过的新组合。
神经网络语言模型
- RNN/LSTM/GRU:循环神经网络(RNN)及其改进版本LSTM和GRU能够较好地处理序列数据,它们可以捕捉更长距离的依赖关系,构建更强大的语言模型。
- Transformer:2017年提出的Transformer模型摒弃了循环结构,利用自注意力机制解决了并行计算难题,极大地提升了语言模型的性能,如GPT系列和BERT模型。
评估
- 困惑度(perplexity):是衡量语言模型好坏的标准之一,越低说明模型对测试数据集的拟合越好,预测效果越准确。
应用场景
- 语音识别:为语音识别系统提供候选词序列的概率,辅助解码阶段选择最有可能的转录文本。
- 机器翻译:在源语言中估算句子的概率,然后在目标语言中找到对应概率最高的译文。
- 自动摘要:帮助确定哪些文本片段应当被保留为摘要的关键内容。
- 情感分析:在预处理阶段,有助于判断文本的合理性与连贯性,提升分析准确性。
- 聊天机器人:生成对话过程中,语言模型用于生成符合语言习惯的回答。
- 文本生成:通过自回归的方式,逐词生成高质量的文本,如文章创作、诗歌生成等。
现代进展
- 预训练模型:如BERT、GPT-3等大规模预训练模型进一步推动了语言模型的发展,这些模型在大量无标签文本上进行自我监督学习,然后在下游任务上微调,极大提升了NLP领域的各项任务表现。
语言模型在自然语言处理领域扮演着至关重要的角色,它不仅在底层支撑着各类NLP任务,还在深度学习时代借助神经网络模型得以革新与发展,成为推动自然语言理解和生成能力不断提升的关键技术。
相关文章:
自然语言处理 | 语言模型(LM) 浅析
自然语言处理(NLP)中的语言模型(Language Model, LM)是一种统计模型,它的目标是计算一个给定文本序列的概率分布,即对于任意给定的一段文本序列(单词序列),语言模型能够估…...
全量知识系统问题及SmartChat给出的答复 之13 解析器+DDD+文法型
Q32. DDD的领域概念和知识系统中设计的解析器之间的关系。 那下面,我们回到前面的问题上来。 前面说到了三种语法解析器,分别是 形式语言的(机器或计算机语言)、人工语言的和自然语言的。再前面,我们聊到了DDD设计思…...
华中某科技大学校园网疑似dns劫持的解决方法
问题 在校园网ping xxx.ddns.net,域名解析失败 使用热点ping xxx.ddns.net,可以ping通 尝试设置windows dns首选dns为114.114.114.114,重新ping,仍然域名解析失败 猜测【校园网可能劫持dns请求】 解决方法 使用加密的dns请求…...
模型部署 - onnx 的导出和分析 -(1) - PyTorch 导出 ONNX - 学习记录
onnx 的导出和分析 一、PyTorch 导出 ONNX 的方法1.1、一个简单的例子 -- 将线性模型转成 onnx1.2、导出多个输出头的模型1.3、导出含有动态维度的模型 二、pytorch 导出 onnx 不成功的时候如何解决2.1、修改 opset 的版本2.2、替换 pytorch 中的算子组合2.3、在 pytorch 登记&…...
【鸿蒙 HarmonyOS 4.0】多设备响应式布局
一、背景 在渲染页面时,需要根据不同屏幕大小渲染出不同的效果,动态的判断设备屏幕大小,便需要采用多设备响应式布局。这种设计方法能够动态适配各种屏幕大小,确保网站在不同设备上都能呈现出最佳的效果。 二、媒体查询…...
Android ANR 日志分析定位
ANR 是 Android 应用程序中的 "Application Not Responding" 的缩写,中文意思是 "应用程序无响应"。这是当应用程序在 Android 系统上运行时,由于某种原因不能及时响应用户输入事件或执行一个操作,导致界面无法更新&…...
Optional 详解
Optional 详解 1、Optional 介绍2、创建 Optional 对象3、Optional 常用方法1. 判断值是否存在 — isPresent()2. 非空表达式 — ifPresent()3. 设置(获取)默认值 — orElse()、orElseGet()4. 获取值 — get()5. 过滤值 — filter()6. 转换值 — map() 作为一名 Java 程序员&am…...
(科目三)数据库基础知识
1、基本概念 1.1 数据库 1、数据、信息和数据处理 数据是指表达信息的某种物理符号; 信息是对客观事物的反映,是为某一特定目的二提供的决策数据; 数据处理是指将数据转换成信息的过程,是对各类型的数据进行收集、整理、存储、…...
Unity性能优化篇(十) 模型优化之网格合并 Easy Mesh Combine Tool插件使用以及代码实现网格合并
把多个模型的网格合并为一个网格。可以使用自己写代码,使用Unity自带的CombineMeshes方法,也可以使用资源商店的插件,在资源商店搜Mesh Combine可以搜索到相关的插件,例如Easy Mesh Combine Tool等插件。 可大幅度减少Batches数量…...
0.8秒一张图40hx矿卡stable diffusion webui 高质极速出图组合(24.3.3)
新消息是。经过三个月的等待,SD Webui (automatic1111)终于推出了新版本1.8.0,本次版本最大的更新,可能就是pytorch更新到2.1.2, 不过还是晚了pytorch 2.2.2版。 不过这版的一些更新,在forget分支上早就实现了,所以。…...
手写分布式配置中心(四)增加实时刷新功能(长轮询)
上一篇文章中实现了短轮询,不过短轮询的弊端也很明显,如果请求的频率较高,那么就会导致服务端压力大(并发高);如果请求的频率放低,那么客户端感知变更的及时性就会降低。所以我们来看另一种轮询…...
03 | 事务隔离:为什么你改了我还看不见?
提到事务,你肯定不陌生,和数据库打交道的时候,我们总是会用到事务。最经典的例子就是转账,你要给朋友小王转 100 块钱,而此时你的银行卡只有 100 块钱。 转账过程具体到程序里会有一系列的操作,比如查询余…...
Jmeter读取与使用Redis数据
Jmeter 作为当前非常受欢迎的接口测试和性能测试的工具,在企业中得到非常广泛的使用,而 Redis 作为缓存数据库,也在企业中得到普遍使用, Redis服务和客户端安装 windows下安装 默认端口:6379 下载地址: …...
flask 支持跨域访问 非常简单的方式 flask_cors
安装 pip install -U flask-cors from flask import Flask from flask_cors import CORSapp Flask(__name__) CORS(app)app.route("/") def helloWorld():return "Hello, cross-origin-world!"参考 https://www.cnblogs.com/anxminise/p/9814326.html …...
Hololens 2应用开发系列(1)——使用MRTK在Unity中设置混合现实场景并进行程序模拟
Hololens 2应用开发系列(1)——使用MRTK在Unity中进行程序模拟 一、前言二、创建和设置MR场景三、MRTK输入模拟的开启 一、前言 在前面的文章中,我介绍了Hololens 2开发环境搭建和项目生成部署等相关内容,使我们能生成一个简单Ho…...
Newtonsoft.Json
目录 引言 1、简单使用 1.1、官方案例 1.2、JsonConvert 2、特性 2.1、默认模式[JsonObject(MemberSerialization.OptIn/OptOut)] 2.2、序列化为集合JsonArrayAttribute/JsonDictionaryAttribute 2.3、序列化该元素JsonProperty 2.4、忽略元素JsonIgnoreAttribute 2.5、…...
速卖通平台的API返回结果有哪些数据字段?
速卖通(AliExpress)作为阿里巴巴旗下的国际电商平台,提供了API接口供开发者使用,以获取商品、订单、物流等各种信息。然而,速卖通API返回的具体数据字段可能会随着API版本、接口类型以及时间的变化而有所不同。 在编写…...
C++ 标准模板库(STL)
1、vector 动态数组,可随时添加删除元素,在堆空间开辟内存。 方法含义front() 返回第一个元素O(1) back()返回最后一个元素O(1)pop_back()删除最后一个元素O(1)push_back(ele)在末尾插入元素O(1)size()返回实际元素个数O(1)clear()清除所有元素O(N)resi…...
【Javascript】设计模式之发布订阅模式
文章目录 1、现实中的发布-订阅模式2、DOM 事件3、简单的发布-订阅模式4、通用的发布-订阅模式5、先发布再订阅6、小结 发布—订阅模式又叫观察者模式,它定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于…...
DataLoader
import torchvision from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter# 准备的测试数据集 数据放在了CIFAR10文件夹下test_data torchvision.datasets.CIFAR10("./CIFAR10",trainFalse, transformtorchvision.transfor…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...
WEB3全栈开发——面试专业技能点P4数据库
一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库,基于 mysql 库改进而来,具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点: 支持 Promise / async-await…...
结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...
