当前位置: 首页 > news >正文

自然语言处理 | 语言模型(LM) 浅析

自然语言处理(NLP)中的语言模型(Language Model, LM)是一种统计模型,它的目标是计算一个给定文本序列的概率分布,即对于任意给定的一段文本序列(单词序列),语言模型能够估算出这段文本在某种语言中的出现概率。以下是语言模型的核心概念、作用、挑战及应用场景的解释:

核心概念

概率计算:
在自然语言处理的语言模型中,概率计算是指模型试图量化一个特定词序列出现的可能性。比如,对于一个长度为 n 的句子 ( w_1, w_2, …, w_n ),语言模型会估算该句子作为一个整体出现在语言中的概率,记作 ( P(w_1, w_2, …, w_n) )。这意味着模型需要理解每个词与其上下文的关系,并且综合所有词之间的相互影响来得出整个序列的概率。

马尔科夫假设:
在实际应用中,直接计算一个长句子的概率是非常困难的,因为它涉及到的变量太多。马尔科夫假设简化了这一过程,其基本思想是当前状态(此处指当前词)的概率仅取决于其最近的 k 个先前状态(之前的 k 个词)。这被称为马尔科夫链。

n-gram 模型:
n-gram 是基于马尔科夫假设的具体实现方式。这里的 n 表示考虑的词的数量。

  1. 二元模型 (Bigram):在二元模型中,我们使用马尔科夫假设的第一阶形式,即每个词的概率仅依赖于它前面的一个词。对于词 ( w_n ),其概率可以通过条件概率的形式表达为 ( P(w_n | w_{n-1}) ),表示的是在已知前一个词 ( w_{n-1} ) 的情况下,词 ( w_n ) 出现的概率。

  2. 三元模型 (Trigram):在三元模型中,我们扩展到了马尔科夫假设的第二阶形式,认为词 ( w_n ) 的概率依赖于它前面两个词,即 ( P(w_n | w_{n-1}, w_{n-2}) ),表示的是在已知前两个词 ( w_{n-1} 和 w_{n-2} ) 的情况下,词 ( w_n ) 出现的概率。

以此类推,可以有四元模型(quadgram)、五元模型(pentagram)等等。然而,随着 n 增大,虽然模型能捕获更长的上下文信息,但数据稀疏性问题也随之加剧——很多可能的 n-gram 在实际语料库中并没有出现过,因此很难得到准确的概率估计。同时,高阶的 n-gram 模型在存储和计算上也会带来更大的开销。

尽管如此,n-gram 模型因其简洁性和实用性,在很多自然语言处理任务中仍被广泛应用。随着深度学习的发展,诸如循环神经网络(RNNs)和Transformer架构等更先进的模型已经可以更好地解决上述问题,能够在更复杂的上下文中估计词的概率。

特点

  • 上下文敏感:好的语言模型应该能够捕捉到词汇间的上下文依赖关系,以便准确估计某个词在具体语境下的概率。
  • 连续性与连贯性:确保生成或评估的文本具有良好的连贯性,即前后词之间逻辑关联紧密。

挑战

  • 数据稀疏性:随着 n 的增加,n-gram 模型面临的数据稀疏性问题愈发严重,即许多较长的词组在训练集中并未出现过。
  • 长距离依赖:n-gram 模型难以捕捉远距离词之间的依赖关系,这对于理解和生成复杂的语法结构十分重要。
  • 泛化能力:传统统计模型的泛化能力有限,无法很好地适应未见过的新组合。

神经网络语言模型

  • RNN/LSTM/GRU:循环神经网络(RNN)及其改进版本LSTM和GRU能够较好地处理序列数据,它们可以捕捉更长距离的依赖关系,构建更强大的语言模型。
  • Transformer:2017年提出的Transformer模型摒弃了循环结构,利用自注意力机制解决了并行计算难题,极大地提升了语言模型的性能,如GPT系列和BERT模型。

评估

  • 困惑度(perplexity):是衡量语言模型好坏的标准之一,越低说明模型对测试数据集的拟合越好,预测效果越准确。

应用场景

  • 语音识别:为语音识别系统提供候选词序列的概率,辅助解码阶段选择最有可能的转录文本。
  • 机器翻译:在源语言中估算句子的概率,然后在目标语言中找到对应概率最高的译文。
  • 自动摘要:帮助确定哪些文本片段应当被保留为摘要的关键内容。
  • 情感分析:在预处理阶段,有助于判断文本的合理性与连贯性,提升分析准确性。
  • 聊天机器人:生成对话过程中,语言模型用于生成符合语言习惯的回答。
  • 文本生成:通过自回归的方式,逐词生成高质量的文本,如文章创作、诗歌生成等。

现代进展

  • 预训练模型:如BERT、GPT-3等大规模预训练模型进一步推动了语言模型的发展,这些模型在大量无标签文本上进行自我监督学习,然后在下游任务上微调,极大提升了NLP领域的各项任务表现。

语言模型在自然语言处理领域扮演着至关重要的角色,它不仅在底层支撑着各类NLP任务,还在深度学习时代借助神经网络模型得以革新与发展,成为推动自然语言理解和生成能力不断提升的关键技术。

相关文章:

自然语言处理 | 语言模型(LM) 浅析

自然语言处理(NLP)中的语言模型(Language Model, LM)是一种统计模型,它的目标是计算一个给定文本序列的概率分布,即对于任意给定的一段文本序列(单词序列),语言模型能够估…...

全量知识系统问题及SmartChat给出的答复 之13 解析器+DDD+文法型

Q32. DDD的领域概念和知识系统中设计的解析器之间的关系。 那下面,我们回到前面的问题上来。 前面说到了三种语法解析器,分别是 形式语言的(机器或计算机语言)、人工语言的和自然语言的。再前面,我们聊到了DDD设计思…...

华中某科技大学校园网疑似dns劫持的解决方法

问题 在校园网ping xxx.ddns.net,域名解析失败 使用热点ping xxx.ddns.net,可以ping通 尝试设置windows dns首选dns为114.114.114.114,重新ping,仍然域名解析失败 猜测【校园网可能劫持dns请求】 解决方法 使用加密的dns请求…...

模型部署 - onnx 的导出和分析 -(1) - PyTorch 导出 ONNX - 学习记录

onnx 的导出和分析 一、PyTorch 导出 ONNX 的方法1.1、一个简单的例子 -- 将线性模型转成 onnx1.2、导出多个输出头的模型1.3、导出含有动态维度的模型 二、pytorch 导出 onnx 不成功的时候如何解决2.1、修改 opset 的版本2.2、替换 pytorch 中的算子组合2.3、在 pytorch 登记&…...

【鸿蒙 HarmonyOS 4.0】多设备响应式布局

一、背景 在渲染页面时,需要根据不同屏幕大小渲染出不同的效果,动态的判断设备屏幕大小,便需要采用多设备响应式布局。这种设计方法能够动态适配各种屏幕大小,确保网站在不同设备上都能呈现出最佳的效果。 二、媒体查询&#xf…...

Android ANR 日志分析定位

ANR 是 Android 应用程序中的 "Application Not Responding" 的缩写,中文意思是 "应用程序无响应"。这是当应用程序在 Android 系统上运行时,由于某种原因不能及时响应用户输入事件或执行一个操作,导致界面无法更新&…...

Optional 详解

Optional 详解 1、Optional 介绍2、创建 Optional 对象3、Optional 常用方法1. 判断值是否存在 — isPresent()2. 非空表达式 — ifPresent()3. 设置(获取)默认值 — orElse()、orElseGet()4. 获取值 — get()5. 过滤值 — filter()6. 转换值 — map() 作为一名 Java 程序员&am…...

(科目三)数据库基础知识

1、基本概念 1.1 数据库 1、数据、信息和数据处理 数据是指表达信息的某种物理符号; 信息是对客观事物的反映,是为某一特定目的二提供的决策数据; 数据处理是指将数据转换成信息的过程,是对各类型的数据进行收集、整理、存储、…...

Unity性能优化篇(十) 模型优化之网格合并 Easy Mesh Combine Tool插件使用以及代码实现网格合并

把多个模型的网格合并为一个网格。可以使用自己写代码,使用Unity自带的CombineMeshes方法,也可以使用资源商店的插件,在资源商店搜Mesh Combine可以搜索到相关的插件,例如Easy Mesh Combine Tool等插件。 可大幅度减少Batches数量…...

0.8秒一张图40hx矿卡stable diffusion webui 高质极速出图组合(24.3.3)

新消息是。经过三个月的等待,SD Webui (automatic1111)终于推出了新版本1.8.0,本次版本最大的更新,可能就是pytorch更新到2.1.2, 不过还是晚了pytorch 2.2.2版。 不过这版的一些更新,在forget分支上早就实现了,所以。…...

手写分布式配置中心(四)增加实时刷新功能(长轮询)

上一篇文章中实现了短轮询,不过短轮询的弊端也很明显,如果请求的频率较高,那么就会导致服务端压力大(并发高);如果请求的频率放低,那么客户端感知变更的及时性就会降低。所以我们来看另一种轮询…...

03 | 事务隔离:为什么你改了我还看不见?

提到事务,你肯定不陌生,和数据库打交道的时候,我们总是会用到事务。最经典的例子就是转账,你要给朋友小王转 100 块钱,而此时你的银行卡只有 100 块钱。 转账过程具体到程序里会有一系列的操作,比如查询余…...

Jmeter读取与使用Redis数据

Jmeter 作为当前非常受欢迎的接口测试和性能测试的工具,在企业中得到非常广泛的使用,而 Redis 作为缓存数据库,也在企业中得到普遍使用, Redis服务和客户端安装 windows下安装 默认端口:6379 下载地址: …...

flask 支持跨域访问 非常简单的方式 flask_cors

安装 pip install -U flask-cors from flask import Flask from flask_cors import CORSapp Flask(__name__) CORS(app)app.route("/") def helloWorld():return "Hello, cross-origin-world!"参考 https://www.cnblogs.com/anxminise/p/9814326.html …...

Hololens 2应用开发系列(1)——使用MRTK在Unity中设置混合现实场景并进行程序模拟

Hololens 2应用开发系列(1)——使用MRTK在Unity中进行程序模拟 一、前言二、创建和设置MR场景三、MRTK输入模拟的开启 一、前言 在前面的文章中,我介绍了Hololens 2开发环境搭建和项目生成部署等相关内容,使我们能生成一个简单Ho…...

Newtonsoft.Json

目录 引言 1、简单使用 1.1、官方案例 1.2、JsonConvert 2、特性 2.1、默认模式[JsonObject(MemberSerialization.OptIn/OptOut)] 2.2、序列化为集合JsonArrayAttribute/JsonDictionaryAttribute 2.3、序列化该元素JsonProperty 2.4、忽略元素JsonIgnoreAttribute 2.5、…...

速卖通平台的API返回结果有哪些数据字段?

速卖通(AliExpress)作为阿里巴巴旗下的国际电商平台,提供了API接口供开发者使用,以获取商品、订单、物流等各种信息。然而,速卖通API返回的具体数据字段可能会随着API版本、接口类型以及时间的变化而有所不同。 在编写…...

C++ 标准模板库(STL)

1、vector 动态数组,可随时添加删除元素,在堆空间开辟内存。 方法含义front() 返回第一个元素O(1) back()返回最后一个元素O(1)pop_back()删除最后一个元素O(1)push_back(ele)在末尾插入元素O(1)size()返回实际元素个数O(1)clear()清除所有元素O(N)resi…...

【Javascript】设计模式之发布订阅模式

文章目录 1、现实中的发布-订阅模式2、DOM 事件3、简单的发布-订阅模式4、通用的发布-订阅模式5、先发布再订阅6、小结 发布—订阅模式又叫观察者模式,它定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于…...

DataLoader

import torchvision from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter# 准备的测试数据集 数据放在了CIFAR10文件夹下test_data torchvision.datasets.CIFAR10("./CIFAR10",trainFalse, transformtorchvision.transfor…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...