当前位置: 首页 > news >正文

Go程序是如何编译并运行起来的(图文详解)

Go程序是如何编译的

hello RdrB1te开始

package main  import "fmt"  func main() {  fmt.Println("hello RdrB1te")  
}

不实际编译它,只输出它的编译过程:

go build -n

简单的编译过程分析:
![[hello程序的简单编译过程分析.png]]

上面的过程确认了两个事情:

  • Runtime会永远随着用户代码一起编译
  • 在windows平台上编译出来了一个exe的可执行文件

Go 编译过程

![[Go编译过程.png]]

词法分析

  • 将源代码翻译成Token
  • Token是代码中的最小语义结构(如变量名、关键字、运算符等不可拆分的最小单元)

句法分析

  • Token序列经过处理,变成语法树

语义分析

  • 类型检查
  • 类型推断
  • 查看类型是否匹配
  • 函数调用内联
  • 逃逸分析

中间码生成:

  • 为了处理不同平台的差异,先生成中间代码(SSA)

查看从代码到中间码(SSA)生成的整个过程

$env:GOSSAFUNC="main" # windows powershell
export GOSSAFUNC=main # linux
go build

会看到如下输出:
![[从用户代码到中间码SSA生成过程查看命令.png]]

用浏览器打开ssa.html文件:
![[生成的中间码SSA的过程.png]]

sources就是你的源代码,AST就是生成的语法树,genssa就是生成的与平台无关的中间码SSA,当然中间还有很多的其它步骤,这里不再列举,可以点击展开查看

机器码生成:

  • 先生成Plan9汇编代码(与平台相关)
  • 最后编译为机器码
  • 输出的机器码为.a文件

查看Plan9汇编代码

go build -gcflags -S main.go

链接:

  • 将各个包进行链接,包括runtime,最终生成可执行文件

Go程序是如何运行起来的

Go程序的入口?

是下面的main方法吗?当然不是

func main() {  fmt.Println("hello RdrB1te")  
}

是runtime包下面的rt0_xxx.s文件,下面以Linux x86芯片架构上面运行的rt0_linux-amd64.s举例:

TEXT _rt0_amd64_linux(SB),NOSPLIT,$-8JMP	_rt0_amd64(SB)

只要用了x86芯片架构都要进入到_rt0_amd64这个方法中去,这个方法调到了哪里呢,选中双击shift,打开在文件中查找:找到下面这行
![[查找_rt0_amd64调用的位置.png]]

asm_amd64.s这个文件中的这段代码:

TEXT _rt0_amd64(SB),NOSPLIT,$-8  MOVQ   0(SP), DI  // argc  LEAQ   8(SP), SI  // argv  JMP    runtime·rt0_go(SB)

意思是读取命令行参数,复制参数数量argc和参数值argv到栈上,然后调用了runtime·rt0_go这个方法,这方法的位置就在这个文件的下面:

TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0  // copy arguments forward on an even stack  MOVQ   DI, AX    // argc  MOVQ   SI, BX    // argv  SUBQ   $(5*8), SP    // 3args 2auto  ANDQ   $~15, SP  MOVQ   AX, 24(SP)  MOVQ   BX, 32(SP)  // create istack out of the given (operating system) stack.  // _cgo_init may update stackguard.   MOVQ   $runtime·g0(SB), DI

上面这段的意思时初始化g0执行栈,g0是为了调度协程而产生的协程,g0是每个Go程序的第一个协程。继续往下面看,找到下面这段:

	CALL	runtime·check(SB)

这行是第一次调用的go语言方法,要找到这个方法可以选中双击shift,找到下面这行:
![[查找runtime.check方法.png]]

进入:

func check(){}

check方法主要是做运行时检测:

  • 检查各种类型的长度
  • 检查指针操作
  • 检查结构体字段的偏移量
  • 检查atomic原子操作
  • 检查CAS操作
  • 检查栈大小是否是2的幂次

继续往下看,可以通过Ctrl+Alt+左右箭头进行快速跳转回退或前进,退到这个位置:

CALL    runtime·check(SB)  MOVL   24(SP), AX    // copy argc  
MOVL   AX, 0(SP)  
MOVQ   32(SP), AX    // copy argv  
MOVQ   AX, 8(SP)  
CALL   runtime·args(SB)  
CALL   runtime·osinit(SB)  
CALL   runtime·schedinit(SB)  // create a new goroutine to start program  
MOVQ   $runtime·mainPC(SB), AX       // entry  
PUSHQ  AX  
CALL   runtime·newproc(SB)  
POPQ   AX

runtime·args(SB):参数初始化runtime.args,对命令行中的参数进行处理,参数数量赋值给argc int32,参数值复制给argv **byte
runtime·osinit:判断操作系统,执行相应的初始化组件,供调度器初始化所用
runtime·schedinit: 初始化Go调度器。初始化调度器会做哪些事情:

  • 全局栈空间内存分配
  • 加载命令行参数到 os.Args
  • 堆内存空间的初始化
  • 加载操作系统环境变量
  • 初始化当前系统线程
  • 垃圾回收器的参数初始化
  • 算法初始化(map、hash)
  • 设置 process 数量

继续往下看:

    // create a new goroutine to start program  MOVQ   $runtime·mainPC(SB), AX       // entry  PUSHQ  AX  CALL   runtime·newproc(SB)  POPQ   AX  // start this M  CALL   runtime·mstart(SB)  CALL   runtime·abort(SB)  // mstart should never return  RET  // mainPC is a function value for runtime.main, to be passed to newproc.  
// The reference to runtime.main is made via ABIInternal, since the  
// actual function (not the ABI0 wrapper) is needed by newproc.  
DATA   runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)

MOVQ $runtime·mainPC(SB):取mainPC的地址,这个mainPC的地址就是runtime·main这个方法的地址
CALL runtime·newproc:创建一个新的协程(主协程),执行runtime·main这个方法(主函数),放入调度器等待调度
CALL runtime·mstart(SB):初始化一个M,用来调度主协程,主协程开始执行主函数。

看下runtime·main这个方法里面干了什么,选中双击shift,找到下面这行:
![[查找runtime·main方法.png]]

进入:

// The main goroutine.
func main() {  doInit(&runtime_inittask) // 执行runtime包中的init方法gcenable() // 启动GC垃圾回收器doInit(&main_inittask) //执行用户包依赖的init方法fn := main_main // 执行用户主函数main.mian() fn()
}

按住ctrl进入main_main:

//go:linkname main_main main.main
func main_main()

主协程执行主函数:

  • 执行runtime包中的init方法
  • 启动GC垃圾回收器
  • 执行用户包依赖的init方法
  • 执行用户主函数main.mian()

总结

  • Go启动时经历了检查、各种初始化、初始化协程调度的过程
  • main.main()也是在协程中运行的

相关文章:

Go程序是如何编译并运行起来的(图文详解)

Go程序是如何编译的 从hello RdrB1te开始 package main import "fmt" func main() { fmt.Println("hello RdrB1te") }不实际编译它&#xff0c;只输出它的编译过程&#xff1a; go build -n简单的编译过程分析&#xff1a; 上面的过程确认了两个…...

程序员如何选择职业赛道

程序员的职业赛道就像是一座迷宫&#xff0c;有前端的美丽花园&#xff0c;后端的黑暗洞穴&#xff0c;还有数据科学的神秘密室。你准备好探索这个充满挑战和机遇的迷宫了吗&#xff1f;快来了解如何选择职业赛道吧&#xff01; 方向一&#xff1a;自我评估与兴趣探索 选择适合…...

GOWIN软件使用

1、管脚复用 根据自己需求把复用管脚勾选上&#xff0c;管脚当普通管脚使用 JTAG设置成普通管脚&#xff0c;下载程序时候JTAGEN管脚需要上拉高电平&#xff08;可以在下载器线上上拉个电阻&#xff0c;下载后把下载线拔走&#xff0c;否则JTAG管脚无法使用&#xff0c;管脚充…...

Ajax (1)

什么是Ajax&#xff1a; 浏览器与服务器进行数据通讯的技术&#xff0c;动态数据交互 axios库地址&#xff1a; <script src"https://cdn.jsdelivr.net/npm/axios/dist/axios.min.js"></script> 如何使用呢&#xff1f; 我们现有个感性的认识 <scr…...

Python基础语法:基本数据类型(数字类型和布尔类型)

在我们的日常生活中&#xff0c;经常会用到数字&#xff0c;所以数字&#xff08;numbers&#xff09;是 pytthon 中的一个基本数据类型。在 python 里面啊&#xff0c;numbers 这种数据类型是一个大类&#xff0c;在 numbers 这个大类下面有整型、浮点型&#xff08;小数&…...

springboot 下载 Excel 文件的 Controller 层案例

环境 pom.xml 中 springboot版本&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.15</version></parent>Excel 文件依赖&#xff1a; &l…...

RabbitMQ队列

RabbitMQ队列 1、死信的概念 ​ 先从概念解释上搞清楚这个定义&#xff0c;死信&#xff0c;顾名思义就是无法被消费的消息&#xff0c;字面意思可以这样理解&#xff0c;一般来说,producer将消息投递到broker或者直接到queue里了&#xff0c;consumer 从 queue取出消息进行消…...

Day12:信息打点-Web应用源码泄漏开源闭源指纹识别GITSVNDS备份

目录 开源-CMS指纹识别源码获取方式 闭源-习惯&配置&特性等获取方式 闭源-托管资产平台资源搜索监控 思维导图 章节点 Web&#xff1a;语言/CMS/中间件/数据库/系统/WAF等 系统&#xff1a;操作系统/端口服务/网络环境/防火墙等 应用&#xff1a;APP对象/API接口/微…...

使用正确的技术和项目管理工具来定义项目范围

根据 PMI 的统计&#xff0c;34% 的项目会出现范围蔓延&#xff1a;悄悄增加超出范围的活动&#xff0c;威胁到利润空间、项目成功率和客户满意度。 预防和控制范围蔓延的方法之一&#xff0c;是首先明确界定项目范围。 项目范围是项目规划、资源调度和变更管理的重要步骤。然…...

【C++】类型转换和IO流

目录 C语言中的类型转换 C eplicit && volatitle eplicit volatile C强制类型转换 static_cast(相关类型) reinterpret_cast(不相关类型&#xff09; const_cast&#xff08;去掉const属性&#xff09; dynamic_cast RTTI&#xff08;了解&#xff09; IO流 …...

leetCode刷题 5.最长回文子串

目录 1. 思路 2. 解题方法 3. 复杂度 4. Code 题目&#xff1a; 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串。 示例 1&#xff1a; 输入&#xff1a;s "babad" 输出&#x…...

计算机组成原理面试题

计算机组成原理是计算机科学的基础课程之一&#xff0c;涉及计算机系统的基本结构和工作原理。以下是一些可能出现在面试中的计算机组成原理相关题目&#xff1a; 1. **什么是冯诺依曼体系结构&#xff1f;** - 冯诺依曼体系结构是一种计算机组织架构&#xff0c;它将程序指…...

「Mybatis深入三」:高级查询-模糊查询

一、需求 根据username 模糊查询user 表 二、代码演示 1、方式1 数据库环境 CREATE DATABASE mybatis_db; USE mybatis_db; CREATE TABLE user (id INT(11) NOT NULL AUTO_INCREMENT,username VARCHAR(32) NOT NULL COMMENT 用户名称,birthday DATETIME DEFAULT NULL COMMEN…...

LabVIEW管道缺陷智能检测系统

LabVIEW管道缺陷智能检测系统 管道作为一种重要的输送手段&#xff0c;其安全运行状态对生产生活至关重要。然而&#xff0c;随着时间的推移和环境的影响&#xff0c;管道可能会出现老化、锈蚀、裂缝等多种缺陷&#xff0c;这些缺陷若不及时发现和处理&#xff0c;将严重威胁到…...

java在cmd中乱码的问题解决

本文深入探讨了在使用 Java 命令行&#xff08;cmd&#xff09;时可能出现的中文乱码问题&#xff0c;并提供了两种解决方案。首先&#xff0c;通过临时的方式&#xff0c;用户可以执行命令 chcp 936 选择字符集&#xff0c;然后再运行 Java 命令&#xff0c;确保在选择字符集过…...

OpenHarmony教程指南—ArkUI中组件、通用、动画、全局方法的集合

介绍 本示例为ArkUI中组件、通用、动画、全局方法的集合。 本示例使用 Tabs容器组件搭建整体应用框架&#xff0c;每个 TabContent内容视图 使用 div容器组件 嵌套布局&#xff0c;在每个 div 中使用 循环渲染 加载此分类下分类导航数据&#xff0c;底部导航菜单使用 TabCont…...

第二证券|金价逼近历史高点 黄金股价值有望重估

经过两个多月的震荡后&#xff0c;黄金打响新一波攻势&#xff0c;期货商场价格已逼近前史高点。 有分析认为&#xff0c;虽然黄金价格短期已有显着涨幅&#xff0c;存在震荡或许&#xff0c;但中长时间看&#xff0c;跟着美联储钱银政策的转向&#xff0c;黄金价格仍有上行动…...

关于51单片机晶振定时问题

单片机中晶振频率为12MHZ的机器周期怎么算? 1、系统晶振频率是12M&#xff0c;则机器周期&#xff1d;12&#xff0f;12&#xff1d;1us&#xff1b; 2、定时1ms&#xff1d;1&#xff0a;1000&#xff1d;1000us&#xff1b; 3、工作在方式1下&#xff1a;最大计数值是2&a…...

NoSQL--2.MongoDB配置(Windows版)

目录 2.MongdoDB配置 2.1 Windows环境下操作 2.1.1 注册MongDB Atlas&#xff1a; 2.1.2 MongoDB Community Server Download&#xff1a; 2.1.3 启动MondgoDB服务&#xff1a; 2.1.3.1 命令行参数的方式启动MongoDB服务&#xff1a; 2.1.3.2 使用配置文件方式启动Mongo…...

HTML静态网页成品作业(HTML+CSS)——安徽宣笔设计制作(5个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有6个页面。 &#x1f3f7;️想要…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...