当前位置: 首页 > news >正文

【自然语言处理六-最重要的模型-transformer-上】

自然语言处理六-最重要的模型-transformer-上

  • 什么是transformer模型
  • transformer 模型在自然语言处理领域的应用
  • transformer 架构
    • encoder
      • input处理部分(词嵌入和postional encoding)
      • attention部分
        • add
        • Norm
      • Feedforward & add && Norm
        • Feedforword,实际上就是两层全连接层,中间有激活函数等
        • add & Norm
      • 最终encoder的输出

什么是transformer模型

  • 它是编码器和解码器的架构,来处理一个序列对,这个跟seq2seq的架构是一样的。
    如果没接触过seq2seq架构,可以通俗的理解,编码器用来处理输入,解码器用来输出
  • 但与seq2seq的架构不同的是,transformer是纯基于注意力的
    之前花了几篇的篇幅讲注意力,也是在为后面讲解这个模型打基础。

transformer模型无疑是近几年最重要的模型,目前的大模型几乎都以它为基础发展,很多模型的名字都带有缩写T,正是transformer的缩写。
当然transfomer不仅仅用于自然语言处理领域,归集于自然语言处理模块下面来讲,是因为它在自然语言处理领域的应用非常广泛,下面就讲它的几种应用。

transformer 模型在自然语言处理领域的应用

编码器和解码器架构,比较擅长处理QA类的问题,但这个QA不仅仅是一个问题、一个答案的形式,许多的自然语言处理,都可以理解为QA类问题,比如:

  1. 真实的QA类问题。比如:机器人问答。
  2. 机器翻译。比如中英翻译
  3. 摘要提取。输入文章,提取摘要
  4. 情感分析。输入评价,输出正面/负面评价
    等等

下面来介绍transformer的架构,看什么样子的架构能实现上面的这些功能

transformer 架构

它出自经典论文《attention is all you need》,论文地址是: http://arxiv.org/abs/1706.03762,本文中的诸多图片都是取自该论文,下面的架构图也是出自论文

在这里插入图片描述
从上图就可以看出,transfomer的架构包括左边encoder和右边decoder,下面先来讲encoder部分

encoder

左侧的encoder部分,输入一排input vector向量,输出一排向量,忽略中间的细节来看,是如下的的架构:
在这里插入图片描述
中间encoer部分,如果是seq2seq架构,就是RNN,transformer就相对复杂一些:
下面分部分介绍encoder的各个部分:

input处理部分(词嵌入和postional encoding)

在这里插入图片描述
输入一排,经过词嵌入input Embedding,再加上位置信息,Postional Encoding (这部分可以在 位置编码有介绍),生成一排向量。
然后进入attention计算

attention部分

transformer最重要的attention部分,这部分是多头注意力。值得注意的是,这部分的输出并不会直接丢给全连接层,还需要在额外经过residual add和layer norm

add

add的操作:
执行residual 残差连接,将attention的输入加到self-attention后的输出

Norm

残差后的输出进行层归一化,层归一化的操作:
不考虑batch,将输入中同一个feature,同一个sample,不同的dimension 计算均值和标准差,然后如下计算
在这里插入图片描述
这个操作,用能听得懂的话翻译一下就是,是对每个样本里面的元素进行归一化
整个过程如下:
在这里插入图片描述
最终上述部分的输出作为全连接层的输入

Feedforward & add && Norm

上一部分的输出,输入到本部分

Feedforword,实际上就是两层全连接层,中间有激活函数等

在这里插入图片描述
当然中间的卷积,可以换成线性层Linear

经过这个全连接层的输出之后,依然要经过残差add 和层归一化norm,然后输出.

add & Norm

这部分 同attention 那一层的操作,此处不赘述

最终encoder的输出

在encoder中,上面这三个步骤是可以重复多次的,所以看到架构图中表示了*N操作。
最终的输出才是encoder的输出。

篇幅所限,下一篇文章继续 transformer的decoder部分 自然语言处理六-最重要的模型-transformer-下

相关文章:

【自然语言处理六-最重要的模型-transformer-上】

自然语言处理六-最重要的模型-transformer-上 什么是transformer模型transformer 模型在自然语言处理领域的应用transformer 架构encoderinput处理部分(词嵌入和postional encoding)attention部分addNorm Feedforward & add && NormFeedforw…...

开发一个带有Servlet的webapp(重点)

【具体步骤如下】 ①在webapps目录下新建一个目录,起名crm(这个crm就是webapp的名字)。当然,也可以是其他目录,名字自拟 注意:crm就是这个webapp的根 ②在webapp的根下新建一个目录:WEB…...

根据xlsx文件第一列的网址爬虫

seleniumXpath 在与该ipynb文件同文件下新增一个111.xlsx,第一列放一堆需要爬虫的同样式网页 然后使用seleniumXpath爬虫 from selenium import webdriver from selenium.webdriver.common.by import By import openpyxl import timedef crawl_data(driver, url)…...

【Linux】 yum —— Linux 的软件包管理器

Linux 的软件包管理器 yum yum 是什么什么是软件包查看软件包 yum 命令行工具yum 配置文件yum 凭什么可以支持下载呢?yum 生态yum 社区yum 的故障排除和资源支持yum 的持续集成和持续交付 yum 是什么 Yum(Yellowdog Updater Modified)是一个…...

函数柯里化(function currying)及部分求值

函数柯里化(function currying) currying又称部分求值。一个currying的函数首先会接受一些参数,接受了这些参数之后,该函数并不会立即求值,而是继续返回另外一个函数,刚才传入的参数在函数形成的闭包中被保…...

R语言简介、环境与基础语法及注释

R语言是一种功能强大的开源统计分析语言和编程环境。它提供了丰富的数据处理、数据可视化和统计分析函数,适用于各种数据分析和建模任务。 R语言的环境主要包括R编程环境和RStudio集成开发环境(IDE)。R编程环境是R语言的核心,它提…...

React报错 之 Objects are not valid as a React child

原文链接: 1、React报错之Objects are not valid as a React child 2、Objects are not valid as a React child error [Solved] 作者:Borislav Hadzhiev 以下文中涉及到的链接均来自于该作者,他写了很多相关的文章,可以多看看他的…...

看一看阿里云,如何把抽象云概念,用可视化表达出来。

云数据库RDS_关系型数据库 云数据库RDS_关系型数据库 专有宿主机 云数据库RDS_关系型数据库_MySQL源码优化版 内容协作平台CCP-企业网盘协同办公-文件实时共享...

软考笔记--系统架构评估

系统架构评估是在对架构分析、评估的基础上,对架构策略的选取进行决策。它利用数据或逻辑分析技术,针对系统的一致性,正确性,质量属性,规划结果等不同方面,提供描述性,预测性和指令性的分析结果…...

AI产品摄影丨香水

AI电商产品拍摄丨(可指定产品) 均为概念图 可换产品 可指定产品,可换logo 工具:StartAI 搭配“手机摄影”风格使用效果更佳哦 咒语:anha perfume in bottle on stone surface, in the style of everyday american…...

Linux系统——tee命令

目录 一、命令简介 二、命令使用 1.命令帮助 2.查看块设备列表并记录到文件存档 3.重复多次标准输入内容 4.将文件复制多份 5.静默输出到文件 6.使用追加方式写入文件 7.将错误信息也输出到文件 8.直接通过键盘往文件输入 9.参数使用案例 三、选项 一、命令简介 t…...

Java agent技术的注入利用与避坑点

什么是Java agent技术? Java代理(Java agent)是一种Java技术,它允许开发人员在运行时以某种方式修改或增强Java应用程序的行为。Java代理通过在Java虚拟机(JVM)启动时以"代理"(agent…...

Linux每日练习

第一部分 1.打开桌面的主文件夹,在图片文件夹下新建一个名为111的文件夹,在视频文件夹下创建一个名为222的文件夹 [rootxcz7 desk]# mkdir -p ./pic/111 [rootxcz7 desk]# mkdir -p ./video/2222.在桌面打开终端,先切换到根目录下&#xff…...

【Python】6. 基础语法(4) -- 列表+元组+字典篇

列表和元组 列表是什么, 元组是什么 编程中, 经常需要使用变量, 来保存/表示数据. 如果代码中需要表示的数据个数比较少, 我们直接创建多个变量即可. num1 10 num2 20 num3 30 ......但是有的时候, 代码中需要表示的数据特别多, 甚至也不知道要表示多少个数据. 这个时候,…...

【C++庖丁解牛】C++内存管理 | new和delete的使用以及使用原理

📙 作者简介 :RO-BERRY 📗 学习方向:致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 📒 日后方向 : 偏向于CPP开发以及大数据方向,欢迎各位关注,谢谢各位的支持 目录 1. C/C内存分布2. C语…...

go调用 c++中数组指针相关

要在Go语言中调用C编译的DLL(动态链接库)并传递数组,你需要遵循以下步骤: 编写C代码:首先,你需要有一个C的DLL,它提供了你想要在Go中调用的函数。为了确保Go可以调用它,你需要使用C…...

NTFS Disk by Omi NTFS for mac v1.1.4中文版

NTFS Disk by Omi NTFS for Mac:NTFS文件系统的无缝桥梁 软件下载:NTFS Disk by Omi NTFS for mac v1.1.4中文版 🌐 跨平台访问,文件无阻 NTFS Disk by Omi NTFS for Mac 为您的Mac提供了对NTFS文件系统的无缝访问。无论您是在Win…...

Arduino应用开发——使用GUI-Guider制作LVGL UI并导入ESP32运行

Arduino应用开发——使用GUI-Guider制作LVGL UI并导入ESP32运行 目录 Arduino应用开发——使用GUI-Guider制作LVGL UI并导入ESP32运行前言1 使用GUI-Guider设计UI1.1 创建工程1.2 设计UI 2 ESP工程导入UI2.1 移植LVGL2.2 移植UI文件2.3 调用UI文件2.4 烧录测试 结束语 前言 GU…...

前端WebRTC局域网1V1视频通话

基本概念 WebRTC(Web Real-Time Communications) 网络实时通讯,它允许网络应用或者站点,在不借助中间媒介的情况下,建立点对点(Peer-to-Peer)的连接,实现视频流和音频流或者其他任…...

设计模式之构建者模式

构建者模式(Builder) 定义 将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建不同的表示 使用场景 主要角色 产品 Product建造者接口 Builder具体的建造者 Concrete Builder指挥者 Director:组织构建过程 示例代码 Data p…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...