seq2seq翻译实战-Pytorch复现
🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)
一、前期准备
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import randomimport torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as Fdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

1.1 搭建语言类
定义了两个常量 SOS_token 和 EOS_token,其分别代表序列的开始和结束。 Lang 类,用于方便对语料库进行操作:
●word2index 是一个字典,将单词映射到索引
●word2count 是一个字典,记录单词出现的次数
●index2word 是一个字典,将索引映射到单词
●n_words 是单词的数量,初始值为 2,因为序列开始和结束的单词已经被添加
SOS_token = 0
EOS_token = 1# 语言类,方便对语料库进行操作
class Lang:def __init__(self, name):self.name = nameself.word2index = {}self.word2count = {}self.index2word = {0: "SOS", 1: "EOS"}self.n_words = 2 # Count SOS and EOSdef addSentence(self, sentence):for word in sentence.split(' '):self.addWord(word)def addWord(self, word):if word not in self.word2index:self.word2index[word] = self.n_wordsself.word2count[word] = 1self.index2word[self.n_words] = wordself.n_words += 1else:self.word2count[word] += 1
1.2 文本处理函数
def unicodeToAscii(s):return ''.join(c for c in unicodedata.normalize('NFD', s)if unicodedata.category(c) != 'Mn')# 小写化,剔除标点与非字母符号
def normalizeString(s):s = unicodeToAscii(s.lower().strip())s = re.sub(r"([.!?])", r" \1", s)s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)return s
1.3 文件读取函数
def readLangs(lang1, lang2, reverse=False):print("Reading lines...")# 以行为单位读取文件lines = open('%s-%s.txt' % (lang1, lang2), encoding='utf-8'). \read().strip().split('\n')# 将每一行放入一个列表中# 一个列表中有两个元素,A语言文本与B语言文本pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]# 创建Lang实例,并确认是否反转语言顺序if reverse:pairs = [list(reversed(p)) for p in pairs]input_lang = Lang(lang2)output_lang = Lang(lang1)else:input_lang = Lang(lang1)output_lang = Lang(lang2)return input_lang, output_lang, pairsMAX_LENGTH = 10 # 定义语料最长长度eng_prefixes = ("i am ", "i m ","he is", "he s ","she is", "she s ","you are", "you re ","we are", "we re ","they are", "they re "
)def filterPair(p):return len(p[0].split(' ')) < MAX_LENGTH and \len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes)def filterPairs(pairs):# 选取仅仅包含 eng_prefixes 开头的语料return [pair for pair in pairs if filterPair(pair)]def prepareData(lang1, lang2, reverse=False):# 读取文件中的数据input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)print("Read %s sentence pairs" % len(pairs))# 按条件选取语料pairs = filterPairs(pairs[:])print("Trimmed to %s sentence pairs" % len(pairs))print("Counting words...")# 将语料保存至相应的语言类for pair in pairs:input_lang.addSentence(pair[0])output_lang.addSentence(pair[1])# 打印语言类的信息print("Counted words:")print(input_lang.name, input_lang.n_words)print(output_lang.name, output_lang.n_words)return input_lang, output_lang, pairsinput_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))
常量 MAX_LENGTH,表示语料中句子的最大长度。
元组 eng_prefixes,包含一些英语句子的前缀。这些前缀用于筛选语料,只选择以这些前缀开头的句子
filterPair 函数用于过滤语料对。它的返回值是一个布尔值,表示是否保留该语料对。这里的条件是:两个句子的长度都不超过 MAX_LENGTH,并且输出语句(第二个句子)以 eng_prefixes 中的某个前缀开头
filterPairs 函数接受一个语料对列表,然后调用 filterPair 函数过滤掉不符合条件的语料对,返回一个新的语料对列表。
prepareData 函数是主要的数据准备函数。它调用了之前定义的 readLangs 函数来读取语言对,然后使用 filterPairs 函数按条件过滤语料对。接着,它打印读取的句子对数、过滤后的句子对数,并统计语料中的词汇量。最后,它将语料保存到相应的语言类中,并返回这些语言类对象以及过滤后的语料对。

二、Seq2Seq 模型
2.1 编码器(Encoder)
class EncoderRNN(nn.Module):def __init__(self, input_size, hidden_size):super(EncoderRNN, self).__init__()self.hidden_size = hidden_sizeself.embedding = nn.Embedding(input_size, hidden_size)self.gru = nn.GRU(hidden_size, hidden_size)def forward(self, input, hidden):embedded = self.embedding(input).view(1, 1, -1)output = embeddedoutput, hidden = self.gru(output, hidden)return output, hiddendef initHidden(self):return torch.zeros(1, 1, self.hidden_size, device=device)
2.2 解码器(Decoder)
class DecoderRNN(nn.Module):def __init__(self, hidden_size, output_size):super(DecoderRNN, self).__init__()self.hidden_size = hidden_sizeself.embedding = nn.Embedding(output_size, hidden_size)self.gru = nn.GRU(hidden_size, hidden_size)self.out = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=1)def forward(self, input, hidden):output = self.embedding(input).view(1, 1, -1)output = F.relu(output)output, hidden = self.gru(output, hidden)output = self.softmax(self.out(output[0]))return output, hiddendef initHidden(self):return torch.zeros(1, 1, self.hidden_size, device=device)
三、训练
3.1 数据预处理
def indexesFromSentence(lang, sentence):return [lang.word2index[word] for word in sentence.split(' ')]# 将数字化的文本,转化为tensor数据
def tensorFromSentence(lang, sentence):indexes = indexesFromSentence(lang, sentence)indexes.append(EOS_token)return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)# 输入pair文本,输出预处理好的数据
def tensorsFromPair(pair):input_tensor = tensorFromSentence(input_lang, pair[0])target_tensor = tensorFromSentence(output_lang, pair[1])return (input_tensor, target_tensor)
3.2 训练函数
使用use_teacher_forcing 的目的是在训练过程中平衡解码器的预测能力和稳定性。以下是对两种策略的解释:
1. Teacher Forcing:在每个时间步(di循环中),解码器的输入都是目标序列中的真实标签。这样做的好处是,解码器可以直接获得正确的输入信息,加快训练速度,并且在训练早期提供更准确的梯度信号,帮助解码器更好地学习。然而,过度依赖目标序列可能会导致模型过于敏感,一旦目标序列中出现错误,可能会在解码器中产生累积的误差。
2. Without Teacher Forcing:在每个时间步,解码器的输入是前一个时间步的预测输出。这样做的好处是,解码器需要依靠自身的预测能力来生成下一个输入,从而更好地适应真实应用场景中可能出现的输入变化。这种策略可以提高模型的稳定性,但可能会导致训练过程更加困难,特别是在初始阶段。一般来说,Teacher Forcing策略在训练过程中可以帮助模型快速收敛,而Without Teacher Forcing策略则更接近真实应用中的生成场景。通常会使用一定比例的Teacher Forcing,在训练过程中逐渐减小这个比例,以便模型逐渐过渡到更自主的生成模式。
综上所述,通过使用use_teacher_forcing 来选择不同的策略,可以在训练解码器时平衡模型的预测能力和稳定性,同时也提供了更灵活的生成模式选择。
teacher_forcing_ratio = 0.5def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):# 编码器初始化encoder_hidden = encoder.initHidden()# grad属性归零encoder_optimizer.zero_grad()decoder_optimizer.zero_grad()input_length = input_tensor.size(0)target_length = target_tensor.size(0)# 用于创建一个指定大小的全零张量(tensor),用作默认编码器输出encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)loss = 0# 将处理好的语料送入编码器for ei in range(input_length):encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)encoder_outputs[ei] = encoder_output[0, 0]# 解码器默认输出decoder_input = torch.tensor([[SOS_token]], device=device)decoder_hidden = encoder_hiddenuse_teacher_forcing = True if random.random() < teacher_forcing_ratio else False# 将编码器处理好的输出送入解码器if use_teacher_forcing:# Teacher forcing: Feed the target as the next inputfor di in range(target_length):decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)loss += criterion(decoder_output, target_tensor[di])decoder_input = target_tensor[di] # Teacher forcingelse:# Without teacher forcing: use its own predictions as the next inputfor di in range(target_length):decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)topv, topi = decoder_output.topk(1)decoder_input = topi.squeeze().detach() # detach from history as inputloss += criterion(decoder_output, target_tensor[di])if decoder_input.item() == EOS_token:breakloss.backward()encoder_optimizer.step()decoder_optimizer.step()return loss.item() / target_lengthimport time
import mathdef asMinutes(s):m = math.floor(s / 60)s -= m * 60return '%dm %ds' % (m, s)def timeSince(since, percent):now = time.time()s = now - sincees = s / (percent)rs = es - sreturn '%s (- %s)' % (asMinutes(s), asMinutes(rs))def trainIters(encoder,decoder,n_iters,print_every=1000,plot_every=100,learning_rate=0.01):start = time.time()plot_losses = []print_loss_total = 0 # Reset every print_everyplot_loss_total = 0 # Reset every plot_everyencoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)# 在 pairs 中随机选取 n_iters 条数据用作训练集training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]criterion = nn.NLLLoss()for iter in range(1, n_iters + 1):training_pair = training_pairs[iter - 1]input_tensor = training_pair[0]target_tensor = training_pair[1]loss = train(input_tensor, target_tensor, encoder,decoder, encoder_optimizer, decoder_optimizer, criterion)print_loss_total += lossplot_loss_total += lossif iter % print_every == 0:print_loss_avg = print_loss_total / print_everyprint_loss_total = 0print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),iter, iter / n_iters * 100, print_loss_avg))if iter % plot_every == 0:plot_loss_avg = plot_loss_total / plot_everyplot_losses.append(plot_loss_avg)plot_loss_total = 0return plot_losses
四、训练与评估
hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = DecoderRNN(hidden_size, output_lang.n_words).to(device)plot_losses = trainIters(encoder1, attn_decoder1, 100000, print_every=5000)

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") # 忽略警告信息
# plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率epochs_range = range(len(plot_losses))plt.figure(figsize=(8, 3))plt.subplot(1, 1, 1)
plt.plot(epochs_range, plot_losses, label='Training Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()

相关文章:
seq2seq翻译实战-Pytorch复现
🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/…...
软考69-上午题-【面向对象技术2-UML】-关系
一、关系 UML中有4种关系: 依赖;关联;泛化;实现。 1-1、依赖 行为(参数),参数就是被依赖的事物,即:独立事物。 当独立事物发生变化时,依赖事务行为的语义也…...
智慧文旅|AI数字人导览:让旅游体验不再局限于传统
AI数字人导览作为一种创新的展示方式,已经逐渐成为了VR全景领域的一大亮点,不仅可以很好的嵌入在VR全景中,更是能够随时随地为观众提供一种声情并茂的讲解介绍,结合VR场景的沉浸式体验,让观众仿佛置身于真实场景之中&a…...
spring boot 集成 mysql ,mybatisplus多数据源
1、需要的依赖,版本自行控制 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId> </dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java<…...
CLion中常用快捷键(仍适用其他编译软件)
基本编辑操作: 复制:Ctrl C粘贴:Ctrl V剪切:Ctrl X撤销:Ctrl Z重做:Ctrl Shift Z (不小心撤销了 需要返回之前的操作 相当于下一步)全选:Ctrl A 导航࿱…...
考研复习c语言初阶(1)
本人准备考研,现在开始每天更新408的内容,目标这个月结束C语言和数据结构,每天更新~ 一.再次认识c语言 C语言是一门通用计算机编程语言,广泛应用于底层开发。C语言的设计目标是提供一种能以简易 的方式编译、处理低级存储器、产生…...
HTML—常用标签
常用标签: 标题标签:<h1></h1>......<h6></h6>段落标签:<p></p>换行标签:<br/>列表:无序列表<ul><li></li></ul> 有序列表<ol>&…...
Midjourney绘图欣赏系列(七)
Midjourney介绍 Midjourney 是生成式人工智能的一个很好的例子,它根据文本提示创建图像。它与 Dall-E 和 Stable Diffusion 一起成为最流行的 AI 艺术创作工具之一。与竞争对手不同,Midjourney 是自筹资金且闭源的,因此确切了解其幕后内容尚不…...
深度学习应该如何入门?
深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。 1. 基础知识 深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率…...
FreeRtos Queue(五)
本篇主要分析在中断中向队列里发消息xQueueGenericSendFromISR和在中断里从队列中读取消息xQueueReceiveFromISR。 前言: xQueueGenericSendFromISR 和 xQueueReceiveFromISR都是在中断里调用的而不是任务里调用的,所以队列满了或者是队列为空的时候自然就没有把当…...
解决虚拟机静态网址设置后还是变动的的问题
源头就是我的虚拟机静态网址设置好了以后但是网址还是会变动 这是我虚拟机的配置 vi /etc/sysconfig/network-scripts/ifcfg-ens33 这是出现的问题 进入这里 cd /etc/sysconfig/network-scripts/ 然后我去把多余的ens33的文件都删了 然后还不行 后来按照这个图片进行了下 然后…...
【教程】Github环境配置新手指南(超详细)
写在前面: 如果文章对你有帮助,记得点赞关注加收藏一波,利于以后需要的时候复习,多谢支持! 文章目录 一、Github初始设置(一)登入Github(二)新建仓库 二、本地Git配置&am…...
突然发现一个很炸裂的平台!
平时小孟会开发很多的项目,很多项目不仅开发的功能比较齐全,而且效果比较炸裂。 今天给大家介绍一个我常用的平台,因含低代码平台,开发相当的快。 1,什么是低代码 低代码包括两种,一种低代码,…...
安卓开发面试题
安卓开发面试题 解释一下 Android 中的四大组件。 答:Android 中的四大组件是 Activity、Service、BroadcastReceiver 和 ContentProvider。其中,Activity 负责界面展示和与用户交互;Service 负责后台服务处理;BroadcastReceiver …...
es6面试题
ES6面试题 var、let、const区别 共同点:都是可以声明变量 区别: 1、var具有变量提升机制,let和const没有 2、var 声明的变量是函数作用域或全局作用域,而 const 和 let 声明的变量是块级作用域。 3、var可以多次声明同一个变量&a…...
Kafka MQ 生产者和消费者
Kafka MQ 生产者和消费者 Kafka 的客户端就是 Kafka 系统的用户,它们被分为两种基本类型:生产者和消费者。除 此之外,还有其他高级客户端 API——用于数据集成的 Kafka Connect API 和用于流式处理 的 Kafka Streams。这些高级客户端 API 使用生产者和消…...
tomcat优化与部署(三)------nignx优化与nginx +tomcat 部署
在目前流行的互联网架构中,Tomcat在目前的网络编程中是举足轻重的,由于Tomcat的运行依赖于JVM,从虚拟机的角度把Tomcat的调整分为外部环境调优 JVM 和 Tomcat 自身调优两部分 Tomcat 是一个流行的开源 Java 服务器,用于托管 Java …...
一个用libcurl多线程下载断言错误问题的排查
某数据下载程序,相同版本的代码,在64位系统中运行正常,但在32位系统中概率性出现断言错误。一旦出现,程序无法正常继续,即使重启亦不行。从年前会上领导提出要追到根,跟到底,到年后的今天&#…...
Docker的安装及MySQL的部署(CentOS版)
目录 1 前言 2 Docker安装步骤 2.1 卸载可能存在的旧版Docker 2.2 配置Docker的yum库 2.2.1 安装yum工具 2.2.2 配置Docker的yum源 2.3 安装Docker 2.4 启动和校验 2.5 配置镜像加速(使用阿里云) 2.5.1 进入控制台 2.5.2 进入容器镜像服务 2.5.3 获取指令并粘贴到…...
css 背景图片居中显示
background 简写 background: #ffffff url(https://profile-avatar.csdnimg.cn/b9abdd57de464582860bf8ade52373b6_misnice.jpg) center center / 100% no-repeat;效果如图:...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
