当前位置: 首页 > news >正文

GPT实战系列-LangChain如何构建基通义千问的多工具链

GPT实战系列-LangChain如何构建基通义千问的多工具链

LLM大模型:

GPT实战系列-探究GPT等大模型的文本生成

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练

随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。

如何管理这些模块呢?

LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。

准备

本例子中,采用通义千问作为LLM

# 引入需要的模块
from langchain.chains import LLMChain, SimpleSequentialChainfrom langchain import PromptTemplateimport os

设置 千问的相关环境,和模型接口函数:

from langchain_community.llms import Tongyi
os.environ["DASHSCOPE_API_KEY"] = "your key"
llm = Tongyi()

构建第一个Prompt链

LangChain可以连接到自己定义的工具,也可以连接到内嵌的tool提供商。此处,先用Prompt构建简单的链路。

# 第一步 prompt工具链
template = "Can you provide a brief summary of the movie {movie_title}? Please keep it concise."first_prompt = PromptTemplate(input_variables=["movie_title"],template=template)chain_one = LLMChain(llm=llm, prompt=first_prompt)

构建第二个Prompt链

# 第二步 prompt工具链second_prompt = PromptTemplate(input_variables=["actor"],template="Can you list three movies featuring {actor}?")chain_two = LLMChain(llm=llm, prompt=second_prompt)

可以看到 两个int 参数:

multiply
multiply(a: int, b: int) -> int - Multiply two numbers.
{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}

SimpleSequentialChain把链串起来

通过SimpleSequentialChain 把 各个链串起来,形成信息处理流。

# 结合第一和第二链
overall_chain = SimpleSequentialChain(chains=[chain_one, chain_two], verbose=True)final_answer = overall_chain.run("Inception")print(final_answer)

最后打印,实现功能。效果取决于定义的Prompt和模型的能力,得到类似的输出::

> Entering new SimpleSequentialChain chain...
Inception is a 2010 science fiction thriller film directed by Christopher Nolan. The movie follows Dom Cobb (Leonardo DiCaprio), an expert thief who specializes in infiltrating people's dreams to steal their ideas. Cobb is offered a chance to have his criminal history erased if he completes an impossible task: implanting an idea into the subconscious mind of a wealthy businessman, Robert Fischer (Cillian Murphy). To do this, Cobb assembles a team including a chemist, an architect, and a forger, and they delve into multiple layers of dream-sharing, facing challenges like time dilation and the risk of being trapped in their own subconscious. As the dreamscapes become more complex, Cobb's haunted past threatens to derail the mission and jeopardize the lives of his team members. The film explores themes of reality, dreams, and the power of the human mind.
1. The Matrix (1999) - This science fiction action film, directed by the Wachowskis, also blurs the lines between reality and the virtual world. It follows Neo (Keanu Reeves), a computer programmer who discovers that his reality is actually a simulated world created by intelligent machines. With the help of a group of rebels, including Morpheus (Laurence Fishburne) and Trinity (Carrie-Anne Moss), Neo learns to manipulate this simulated reality and fights against the machine-controlled dystopia.2. Interstellar (2014) - Another Christopher Nolan-directed film, Interstellar explores the boundaries of space, time, and human endeavor. Matthew McConaughey plays Cooper, a former pilot and engineer who leads an expedition through a wormhole in search of a new habitable planet for humanity. The movie delves into complex scientific concepts like relativity and the fifth dimension while examining the emotional impact of leaving loved ones behind.3. Paprika (2006) - This Japanese animated psychological science fiction film, directed by Satoshi Kon, revolves around a device that allows therapists to enter and explore their patients' dreams. Dr. Atsuko Chiba, using her alter ego Paprika, must navigate a chaotic dreamscape when the device falls into the wrong hands, causing dream and reality to merge dangerously. The film explores similar themes of dreams and their impact on the human psyche as Inception.> Finished chain.
1. The Matrix (1999) - This science fiction action film, directed by the Wachowskis, also blurs the lines between reality and the virtual world. It follows Neo (Keanu Reeves), a computer programmer who discovers that his reality is actually a simulated world created by intelligent machines. With the help of a group of rebels, including Morpheus (Laurence Fishburne) and Trinity (Carrie-Anne Moss), Neo learns to manipulate this simulated reality and fights against the machine-controlled dystopia.2. Interstellar (2014) - Another Christopher Nolan-directed film, Interstellar explores the boundaries of space, time, and human endeavor. Matthew McConaughey plays Cooper, a former pilot and engineer who leads an expedition through a wormhole in search of a new habitable planet for humanity. The movie delves into complex scientific concepts like relativity and the fifth dimension while examining the emotional impact of leaving loved ones behind.3. Paprika (2006) - This Japanese animated psychological science fiction film, directed by Satoshi Kon, revolves around a device that allows therapists to enter and explore their patients' dreams. Dr. Atsuko Chiba, using her alter ego Paprika, must navigate a chaotic dreamscape when the device falls into the wrong hands, causing dream and reality to merge dangerously. The film explores similar themes of dreams and their impact on the human psyche as Inception.

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关文章:

GPT实战系列-LangChain如何构建基通义千问的多工具链

GPT实战系列-LangChain如何构建基通义千问的多工具链 LLM大模型: GPT实战系列-探究GPT等大模型的文本生成 GPT实战系列-Baichuan2等大模型的计算精度与量化 GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF GPT实…...

【vue2基础教程】vue指令

文章目录 前言一、内容渲染指令1.1 v-text1.2 v-html1.3 v-show1.4 v-if1.5 v-else 与 v-else-if 二、事件绑定指令三、属性绑定指令总结 前言 Vue.js 是一款流行的 JavaScript 框架,广泛应用于构建交互性强、响应速度快的现代 Web 应用程序。Vue 指令是 Vue.js 中…...

P4551 最长异或路径

最长异或路径 题目描述 给定一棵 n n n 个点的带权树,结点下标从 1 1 1 开始到 n n n。寻找树中找两个结点,求最长的异或路径。 异或路径指的是指两个结点之间唯一路径上的所有边权的异或。 输入格式 第一行一个整数 n n n,表示点数…...

鸿蒙OpenHarmony HDF 驱动开发

目录 序一、概述二、HDF驱动框架三、驱动程序四、驱动配置坚持就有收获 序 最近忙于适配OpenHarmonyOS LiteOS-M 平台,已经成功实践适配平台GD32F407、STM32F407、STM32G474板卡,LiteOS适配已经算是有实际经验了。 但是,鸿蒙代码学习进度慢下…...

深度学习:如何面对隐私和安全方面的挑战

深度学习技术的广泛应用推动了人工智能的快速发展,但同时也引发了关于隐私和安全的深层次担忧。如何在保护用户隐私的同时实现高效的模型训练和推理,是深度学习领域亟待解决的问题。差分隐私、联邦学习等技术的出现,为这一挑战提供了可能的解…...

【操作系统概念】第12章:大容量存储阶段

文章目录 0.前言12.1 概述12.2磁盘结构12.3 磁盘调度12.3.1 FCFS调度12.3.2 SSTF调度12.3.3 SCAN调度12.3.4 C-SCAN调度12.3.5 如何选择磁盘调度 0.前言 文件系统从逻辑上来看包括三部分。第10章讨论了文件系统的用户和程序员的接口。第11章描述了操作系统实现这种接口的内部数…...

UE5.1_使用技巧(常更)

UE5.1_使用技巧(常更) 1. 清除所有断点 运行时忘记蓝图中的断点可能会出现运行错误的可能,务必运行是排除一切断点,逐个排查也是办法,但是在事件函数多的情况下会很复杂且慢节奏,学会一次性清除所有很有必…...

rust开发100问?

Rust如何管理内存?Rust的所有权是什么?生命周期在Rust中如何工作?什么是借用在Rust中?如何在Rust中创建枚举类型?Rust中的trait是什么?如何定义并实现一个结构体(struct)的方法&…...

.net6Api后台+uniapp导出Excel

之前的这个是vue3写法,后端是.net6Api.net6Api后台VUE3前端实现上传和下载文件全过程_vue3 下载文件-CSDN博客 在现在看来似乎搞的复杂了,本次记录一下.net6Api后台uniapp导出Excel。 后端和之前的不一样,前端也和之前的不一样,…...

【OD】算法二

开源项目热度榜单 某个开源社区希望将最近热度比较高的开源项目出一个榜单,推荐给社区里面的开发者。对于每个开源项目,开发者可以进行关注(watch)、收藏(star)、fork、提issue、提交合并请求(MR)等。 数据库里面统计了每个开源项目关注、收藏、fork、…...

《深度学习风暴:掀起智能革命的浪潮》

在当今信息时代,深度学习已经成为科技领域的一股强大力量,其应用领域涵盖了从医疗到金融再到智能交互等方方面面。随着技术的不断进步和应用的不断拓展,深度学习的发展势头愈发迅猛,掀起了一股智能革命的浪潮。本文将从基本原理、应用实例、挑战与未来发展方向、与机器学习…...

Arduin ESP32+epaper(电子墨水屏)时钟相册制作教程

Arduin ESP32 epaper(电子墨水屏)时钟相册制作教程 🔖epaper(电子墨水屏)采用的是:合宙1.54“ 电子墨水屏(e-paper)📍相关篇《Arduino框架下ESP32/ESP8266合宙1.54“ 电子墨水屏(e-paper)驱动显…...

Django模型层(附带test环境)

Django模型层(附带test环境) 目录 Django模型层(附带test环境)连接数据库Django ORM在models.py中建表允许为空指定默认值数据库迁移命令 开启测试环境建表语句补充(更改默认表名)数据的增加时间数据的时区 多表数据的增加一对多多对多 数据的删除修改数据查询数据查询所有数据…...

(AliyunAIACP17)知识点:神经网络(深度学习)分析

摘要: 案,详细阐述了神经网络的实现步骤,并提供了相应的代码示例。此外,文章还涵盖了神经网络中的技巧与实践、性能优化与测试,以及常见问题与解答。最后,对神经网络在深度学习中的应用前景进行了展望。 …...

基于 HBase Phoenix 构建实时数仓(1)—— Hadoop HA 安装部署

目录 一、主机规划 二、环境准备 1. 启动 NTP 时钟同步 2. 修改 hosts 文件 3. 配置所有主机间 ssh 免密 4. 修改用户可打开文件数与进程数(可选) 三、安装 JDK 四、安装部署 Zookeeper 集群 1. 解压、配置环境变量 2. 创建配置文件 3. 创建新…...

XS2185:八通道PSE控制器产品

八通道PSE控制器产品-XS2185 芯片特性 八通道PSE 支持标准PD供电 支持非标PD供电 每个端口功率最大30W 12位端口电流监测 12位电源电压监测 支持直流负载断开检测 支持LED供电状态指示 支持过流保护 支持短路保护 Sifos基本测试通过 32-PIN…...

Selenium WebDriver API 中涉及的一些常用方法和类

Selenium WebDriver API 是 Selenium 提供的一组方法和类,用于控制浏览器和操作 Web 元素。这些 API 提供了丰富的功能,包括但不限于: 1. **查找元素**:通过不同的定位方式(如ID、Class Name、XPath等)在页…...

OJ_复数集合

题干 C实现 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <queue> #include <string> using namespace std;struct Complex {int re;int im;//构造函数Complex(int _re, int _im) {//注意参数名字必须不同re _re;im _im;} };//结构体不支…...

【学一点RISC-V】ACLINT(高级核心本地中断控制器)文档

RISCV架构 ACLINT文档 ACLINT原文档&#xff1a;https://github.com/riscv/riscv-aclint/blob/main/riscv-aclint.adoc 在这里进行了翻译以及校对&#xff0c;仅供参考&#xff0c;不正确的地方欢迎指出 1、介绍 【此 RISC-V ACLINT 规范定义了一组内存映射设备&#xff0c;这…...

grafana table合并查询

注&#xff1a;本文基于Grafana v9.2.8编写 1 问题 默认情况下table展示的是一个查询返回的多个field&#xff0c;但是我想要的数据在不同的metric上&#xff0c;比如我需要显示某个pod的读写IO&#xff0c;但是读和写这两个指标存在于两个不同的metirc&#xff0c;需要分别查…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...

Linux中INADDR_ANY详解

在Linux网络编程中&#xff0c;INADDR_ANY 是一个特殊的IPv4地址常量&#xff08;定义在 <netinet/in.h> 头文件中&#xff09;&#xff0c;用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法&#xff0c;允许套接字监听所有本地IP地址上的连接请求。 关…...