蚁群算法负荷预测
%% 清空环境变量
clc
clear
close all
format compact
%% 网络结构建立
%% 清空环境变量
clc
clear
close all
format compact
%% 网络结构建立
%读取数据
data=xlsread('天气_电量_数据.xlsx','C12:J70');%前7列为每个时刻的发电量 最后列为天气
for i=1:58
input(i,:)=[data(i,:) data(i+1,end)];
output(i,:)=data(i+1,1:7);
end
%% 节点个数
inputnum=9;%输入 前一天7个时刻的电量+前一天的天气+预测日的天气
hiddennum=5;
outputnum=7;%预测日7个时刻的发电量
%% 训练数据和预测数据 最后一天用来测试 前面的都拿来训练
input_train=input(1:57,:)';
input_test=input(58,:)';
output_train=output(1:57,:)';
output_test=output(58,:)';
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%%
%构建网络
net=newff(inputn,outputn,hiddennum);
%寻优
[bestnest,trace]=antforelm(inputnum,hiddennum,outputnum,net,inputn,outputn);
figure
plot(trace)
title('适应度曲线')
xlabel('迭代数')
ylabel('适应度值')
%% 把最优初始阀值权值赋予网络预测
x=bestnest;
% 用CS优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2';
%% BP网络训练
%网络进化参数
net.trainParam.epochs=200;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;
%网络训练
[net,per2]=train(net,inputn,outputn);
%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
%%
figure
a1=output_test;
a2=test_simu;
plot(a1,'*-');hold on
plot(a2,'O-')
title('各时刻发电量实际值与预测值')
xlabel('')
legend('原始数据','bp预测数据')
set(gca,'XTick',1:7,...
'XTickLabel',{'9:00','10:00','11:00','12:00','13:00','14:00','15:00'},...
'TickLength',[0 0]);
grid on
ylabel('发电量(KW)')
相关文章:
蚁群算法负荷预测
%% 清空环境变量 clc clear close all format compact %% 网络结构建立 %% 清空环境变量 clc clear close all format compact %% 网络结构建立 %读取数据 dataxlsread(天气_电量_数据.xlsx,C12:J70);%前7列为每个时刻的发电量 最后列为天气 for i1:58 input(i,:)[data…...
ubuntu添加系统服务实现开机root权限运行
需求 开机自动运行程序(或脚本),需要以root权限运行但不输入密码,也不能将密码写入文件。 环境 Ubuntu 20.04 解决方案 添加系统服务,然后通过systemctl控制。 操作步骤 假设目标程序为/home/xxx/test 1、创建service配置文件 [Unit…...
【阅读笔记】你不知道的Javascript--类与类型委托3
目录类一些常见原理混入行为委托委托理论类与对象更妙的设计与语法类型冷门关键词typeof 防范机制值原生函数访问内部属性类 一些常见原理 在继承或者实例化时,JavaScript 的对象机制并不会自动执行复制行为; 多态:JS 中的多态,…...

文件服务设计
一、需求背景 文件的上传、下载功能是软件系统常见的功能,包括上传文件、下载文件、查看文件等。例如:电商系统中需要上传商品的图片、广告视频,办公系统中上传附件,社交类系统中上传用户头像等等。文件上传下载大致流程为&#…...
【批处理脚本】-1.22-字符串界定符号 ““
"><--点击返回「批处理BAT从入门到精通」总目录--> 共3页精讲(列举了所有字符串界定符号 ""的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,…...

【Flutter·学习实践·UI篇】基础且重要的UI知识
前言 参考学习官网:《Flutter实战第二版》 学习前先记住:Flutter 中万物皆为Widget,心中默念3次以上铭记于心。 这一点和开发语言Dart的变量一切皆是对象的概念,相互对应。 Widget 在前面的介绍中,我们知道在Flutt…...

【OpenCV】车牌自动识别算法的设计与实现
写目录一. 🦁 设计任务说明1.1 主要设计内容1.1.1 设计并实现车牌自动识别算法,基本功能要求1.1.2 参考资料1.1.3 参考界面布局1.2 开发该系统软件环境及使用的技术说明1.3 开发计划二. 🦁 系统设计2.1 功能分析2.1.1 车辆图像获取2.1.2 车牌…...

SpringBoot发送邮件
目录1. 获取授权码2. jar包引入3. 配置application4. 代码实现1. 获取授权码 以126邮箱为例,点开设置,选择POP3/SMTP/IMAP 开启POP3/SMTP服务,新增授权密码 扫码二维码,发送要求的短信内容到指定的号码即可,然后会返回…...

BigInteger类和BigDecimal类的简单介绍
文章目录📖前言:🎀BigInteger类和BigDecimal类的由来🎀BigDecimal类的优点🎀BigDecimal类容易引发的错误🏅处理方法📖前言: 本篇博客主要介绍BigInteger类和BigDecimal类的用途及常…...

mysql五种索引类型---实操版本
背景 最近学习了Mysql的索引,索引对于Mysql的高效运行是非常重要的,正确的使用索引可以大大的提高MySql的检索速度。通过索引可以大大的提升查询的速度。不过也会带来一些问题。比如会降低更新表的速度(因为不但要把保存数据还要保存一下索引…...

【微信小程序】-- 页面导航 -- 编程式导航(二十三)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...
路由追踪工具 traceroute 使用技巧
路由追踪工具 traceroute 使用技巧路由追踪工作原理路由追踪实例1. 如何运行 traceroute2. 禁用 IP 地址和主机名映射3. 配置回复等待时间4. 配置每一跳的查询次数5. 配置 TTL 值我想知道一个数据包从出发地到目的地所遵循的路由,即所有转发实体(中间的路…...

NGINX学习笔记 - 一篇了解NGINX的基本概念(一)
NGINX是什么? NGINX是一款由俄罗斯人伊戈尔赛索耶夫使用C语言开发的、支持热部署的、轻量级的WEB服务器/反向代理服务器/电子邮件代理服务器,因为占用内存较少,启动极快,高并发能力强,所以在互联网项目中广泛应用。可…...

Spring-Cloud-Gateway的过滤器的执行顺序问题
过滤器的种类 Spring-Cloud-Gateway中提供了3种类型的过滤器,分别是:路由过滤器、Default过滤器和Global过滤器。 路由过滤器和Default过滤器 路由过滤器和Default过滤器本质上是同一种过滤器,只不过作用范围不一样,路由过滤器…...

Android性能优化的底层逻辑
前言性能优化仿佛成了每个程序员开发的必经之路,要想出人头地,与众不同,你还真需要下点功夫去研究Android的性能优化,比如说,从优化应用启动、UI加载、再到内存、CPU、GPU、IO、还有耗电等等,当你展开一个方…...

Gradle+SpringBoot多模块开发
关于使用Gradle结合SpringBoot进行多模块开发。 本来是打算使用buildSrc之类的,但是感觉好像好麻烦,使用这种方法就可以实现,没必要采用其他的。 我不怎么会表述,可能写的跟粑粑一样,哈哈哈哈 这是我的项目地址。 存在…...
Qt 之 emit、signals、slot的使用
本文福利,莬费领取Qt开发学习资料包、技术视频,内容包括(C语言基础,Qt编程入门,QT信号与槽机制,QT界面开发-图像绘制,QT网络,QT数据库编程,QT项目实战,QSS&am…...

每日学术速递3.6
Subjects: cs.CV 1.Multi-Source Soft Pseudo-Label Learning with Domain Similarity-based Weighting for Semantic Segmentation 标题:用于语义分割的基于域相似性加权的多源软伪标签学习 作者:Shigemichi Matsuzaki, Hiroaki Masuzawa, Jun Miura …...
C# 将对象转换成字节数组(二进制数据)
在将自定义对象或者数组等这样的数据存储到数据库时往往需要转换成二进制字节,尤其是在一些O/RM数据库框架中,下面是转换的函数,一个是将对象转换成二进制字节数组,另一个是将从数据库中读取的二进制流转换成程序中的对象。 这里…...

巾帼绽芬芳 一起向未来(下篇)
编者按:为了隆重纪念纪念“三八”国际妇女节113周年,快来与你全方位、多层次分享交流“三八”国际妇女节的前世今生。分上篇(节日简介、节日发展和节日意义)、中篇(节日活动宗旨和世界各国庆祝方式)和下篇&…...

XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...