人工智能|机器学习——DBSCAN聚类算法(密度聚类)
1.算法简介
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,簇集的划定完全由样本的聚集程度决定。聚集程度不足以构成簇落的那些样本视为噪声点,因此DBSCAN聚类的方式也可以用于异常点的检测。
2.算法原理
2.1 基本原理
算法的关键在于样本的‘聚集程度’,这个程度的刻画可以由聚集半径和最小聚集数两个参数来描述。如果一个样本聚集半径领域内的样本数达到了最小聚集数,那么它所在区域就是密集的,就可以围绕该样本生成簇落,这样的样本被称为核心点。如果一个样本在某个核心点的聚集半径领域内,但其本身又不是核心点,则被称为边界点;既不是核心点也不是边界点的样本即为噪声点。其中,最小聚集数通常由经验指定,一般是数据维数+1或者数据维数的2倍。
通俗地讲,核心点就是构成一个簇落的核心成员;边界点就是构成一个簇落的非核心成员,它们分布于簇落的边界区域;噪声点是无法归属在任何一个簇集的游离的异常样本。如图所示。

对于聚成的簇集,这里有三个相关的概念:密度直达,密度可达,密度相连。
- 密度直达:对一个核心点p,它的聚集半径领域内的有点q,那么称p到q密度直达。密度直达不具有对称性。
- 密度可达: 有核心点p1,p2,…,pn,非核心点q,如果pi到pi+1(i=1,2,…,n-1)是密度直达的,pn到q是密度直达的,那么称核心点pi(i=1,2,…,n)到其他的点是密度可达的。密度可达不具有对称性。
- 密度相连:如果有核心点P,到两个点A和B都密度可达,那么称A和B密度相连。密度相连具有对称性。
简单地讲,核心点到其半径邻域内的点是密度直达的;核心点到其同簇集内的点是密度可达的;同一个簇集里的成员间是密度相连的。

由定义易知,密度直达一定密度可达,密度可达一定密度相连。密度相连就是对聚成的一个簇集最直接的描述。
2.2 算法描述
输入:样本集D,聚集半径r,最小聚集数MinPts;
输出:簇集C1,C2,…,Cn,噪声集O.
根据样本聚集程度,传播式地划定聚类簇,并将不属于任何一个簇的样本划入噪声集合。
- (1)随机搜寻一个核心点p,

- (2)在核心点p处建立簇C,将r邻域内所有的点加入簇C.
- (3)对邻域内所有未被标记的点迭代式进行考察,扩展簇集.若一个邻域点q为核心点,则将它领域内未归入集合的点加入簇C中.
- (4)重复以上步骤,直至所有样本划入了指定集合;
- (5)输出簇集C1,C2,…,Cn和噪声集合O。
3.优缺点
3.1 优势
1.可以发现任意形状的簇,适用于非凸数据集;
2.可以进行异常检测;
3.不需要指定簇数,根据样本的密集程度适应性地聚集。
3.2 不足
1.当样本集密度不均匀,不同簇中的平均密度相差较大时,效果较差;
2.聚集半径和最小聚集数两个参数需人工指定。
4.示例
假设二维空间中有下列样本,坐标为(1,2),(1,3),(3,1),(2,2),(9,8),(8,9),(9,9),(18,18)
由DBSCAN算法完成聚类操作。
过程演算:
由经验指定参数聚集半径r=2,最小聚集数MinPts=3。
- (1)随机搜寻一个核心点,若不存在,返回噪声集合。考察点(1,2),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(1,2)为核心点。
- (2)在核心点(1,2)处建立簇C1,原始簇成员为r邻域内样本:(1,2)、(1,3)、(2,2)。
- (3)对簇落C1成员迭代式进行考察,扩展簇集。先考察(1,3),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(1,3)为核心点,它邻域内的样本均已在簇C1中,无需进行操作。
再考察(2,2),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共四个样本点,达到了MinPts数,因此(2,2)为核心点,将它领域内尚未归入任何一个簇落的点(3,1)加入簇C1。
再考察(3,1),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共两个样本点,因此(3,1)是非核心点。
考察结束,簇集C1扩展完毕。
- (4)在其余未归簇的样本点中搜寻一个核心点,若不存在,返回噪声集合。考察点(9,8),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(9,8)为核心点。
- (5)在核心点(9,8)处建立簇C2,原始簇成员为r邻域内样本:(9,8)、(8,9)、(9,9)。
- (6)对簇落C2成员迭代式进行考察,扩展簇集。先考察(8,9),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(8,9)为核心点,它邻域内的样本均已在簇C2中,无需进行操作。
再考察(9,9),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(9,9)为核心点。它邻域内的样本均已在簇C2中,无需进行操作。
考察结束,簇集C2扩展完毕。
- (7)在其余未归簇的样本点中搜寻一个核心点,若不存在,返回噪声集合。其余未归簇的样本点集合为{(18,18)},考察(18,18),它到各点的距离分别为

在它的r邻域内,包括了自身在内的共一个样本点,未达到MinPts数,因此(18,18)为非核心点。其余未归簇的样本中不存在核心点,因此归入噪声集O={(18,18)}。
- (8)输出聚类结果
簇类C1:{(1,2),(1,3),(3,1),(2,2)}
簇类C2:{(9,8),(8,9),(9,9)}
噪声集O:{(18,18)}
5.Python代码
'''
功能:用python实现DBSCAN聚类算法。
'''
from sklearn.cluster import DBSCAN
import numpy as np
import matplotlib.pyplot as plt# 初始化数据
data = np.array([(1,2),(1,3),(3,1),(2,2),(9,8),(8,9),(9,9),(18,18)])# 定义DBSCAN模型
dbscan = DBSCAN(eps=2,min_samples=3)# 计算数据,获取标签
labels = dbscan.fit_predict(data)# 定义颜色列表
colors = ['b','r','c']
T = [colors[i] for i in labels]# 输出簇类
print('\n 聚类结果: \n')
ue = np.unique(labels)
for i in range(ue.size):CLS = []for k in range(labels.size):if labels[k] == ue[i]:CLS.append(tuple(data[k]))print('簇类{}:'.format(ue[i]),CLS)# 结果可视化
plt.figure()
plt.scatter(data[:,0],data[:,1],c=T,alpha=0.5) # 绘制数据点
plt.show()


相关文章:
人工智能|机器学习——DBSCAN聚类算法(密度聚类)
1.算法简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,簇集的划定完全由样本的聚集程度决定。聚集程度不足以构成簇落的那些样本视为噪声点,因此DBSCAN聚类的方式也可以用于异常点的检测。 2.算法原…...
Excel F4键的作用
目录 一. 单元格相对/绝对引用转换二. 重复上一步操作 一. 单元格相对/绝对引用转换 ⏹ 使用F4键 如下图所示,B1单元格引用了A1单元格的内容。此时是使用相对引用,可以按下键盘上的F4键进行相对引用和绝对引用的转换。 二. 重复上一步操作 ⏹添加或删除…...
前端实现跨域的六种解决方法
本专栏是汇集了一些HTML常常被遗忘的知识,这里算是温故而知新,往往这些零碎的知识点,在你开发中能起到炸惊效果。我们每个人都没有过目不忘,过久不忘的本事,就让这一点点知识慢慢渗透你的脑海。 本专栏的风格是力求简洁…...
macOS上实现「灵动岛」效果
自从Apple iPhone推出了「灵动岛」功能后,用户们就被其优雅的设计和强大的功能所吸引。然而,作为macOS用户,我们一直在等待这一功能能够在我们的设备上实现。现在,随着新的应用程序的推出,我们终于可以在我们的Mac上体…...
幕译--本地字幕生成与翻译--Whisper客户端
幕译–本地字幕生成与翻译 本地离线的字幕生成与翻译,支持GPU加速。可免费试用,无次数限制 基于Whisper,希望做最好的Whisper客户端 功能介绍 本地离线,不用担心隐私问题支持GPU加速支持多种模型支持(中文、英语、日…...
链表基础知识详解
链表基础知识详解 一、链表是什么?1.链表的定义2.链表的组成3.链表的优缺点4.链表的特点 二、链表的基本操作1.链表的建立2.链表的删除3.链表的查找4.链表函数 一、链表是什么? 1.链表的定义 链表是一种物理存储单元上非连续、非顺序的存储结构…...
GPT-prompt大全
ChatGPT目前最强大的的工具是ChatGPT Plus,不仅训练数据更新到了2023年,而且还可以优先访问新功能。对于程序员来说,升级到ChatGPT Plus,将会带来更多的便利和效率提升。 根据 升级ChatGPT Plus保姆级教程,1分钟就可以…...
的发射点2
☞ 通用计算机启动过程 1️⃣一个基础固件:BIOS 一个基础固件:BIOS→基本IO系统,它提供以下功能: 上电后自检功能 Power-On Self-Test,即POST:上电后,识别硬件配置并对其进行自检,…...
深入揭秘Lucene:全面解析其原理与应用场景(一)
本系列文章简介: 本系列文章将深入揭秘Lucene,全面解析其原理与应用场景。我们将从Lucene的基本概念和核心组件开始,逐步介绍Lucene的索引原理、搜索算法以及性能优化策略。通过阅读本文,读者将会对Lucene的工作原理有更深入的了解…...
拿捏算法的复杂度
目录 前言 一:算法的时间复杂度 1.定义 2.简单的算法可以数循环的次数,其余需要经过计算得出表达式 3.记法:大O的渐近表示法 表示规则:对得出的时间复杂度的函数表达式,只关注最高阶,其余项和最高阶…...
C语言实战—猜数字游戏(涉及循环和少部分函数内容)
对于前面一些内容的总结 不妨跟着一起试试吧 折半查找算法(二分查找) 比如我买了一双鞋,你好奇问我多少钱,我说不超过300元。你还是好奇,你想知道到底多少,我就让 你猜,你会怎么猜?…...
#define MODIFY_REG(REG, CLEARMASK, SETMASK)
#define MODIFY_REG(REG, CLEARMASK, SETMASK) WRITE_REG((REG), (((READ_REG(REG)) & (~(CLEARMASK))) | (SETMASK))) 这个宏 MODIFY_REG 是在嵌入式编程中,它用于修改一个寄存器的特定位,而不影响其他位。这个宏接受三个参数ÿ…...
使用 Docker 部署 Stirling-PDF 多功能 PDF 工具
1)Stirling-PDF 介绍 大家应该都有过这样的经历,面对一堆 PDF 文档,或者需要合并几个 PDF,或者需要将一份 PDF 文件拆分,又或者需要调整 PDF 中的页面顺序,找到的线上工具 要么广告满天飞,要么 …...
springcloud第3季 项目工程搭建与需求说明1
一 需求说明 1.1 实现结构图 订单接口调用支付接口 二 工程搭建 2.1 搭建工程步骤...
外包干了3个月,技术退步明显。。。。
先说一下自己的情况,本科生,2019年我通过校招踏入了南京一家软件公司,开始了我的职业生涯。那时的我,满怀热血和憧憬,期待着在这个行业中闯出一片天地。然而,随着时间的推移,我发现自己逐渐陷入…...
Redis特性与应用场景
Redis是一个在内存中存储数据的中间件,用于作为数据库,用于作为数据缓存,在分布式系统中能够发挥重要作用。 Redis的特性 1.In-memory data structures: MySQL使用表的方式存储数据,这意味着数据通常存储在硬盘上,并且…...
openssl3.2 - exp - 可以在命令行使用的口令算法名称列表
文章目录 openssl3.2 - exp - 可以在命令行使用的口令算法名称列表概述笔记测试工程实现备注整理 - 总共有126种加密算法可用于命令行参数的密码加密算法备注END openssl3.2 - exp - 可以在命令行使用的口令算法名称列表 概述 上一个笔记openssl3.2 - exp - PEM <…...
模板不存在:./Application/Home/View/OnContact/Index.html 错误位置
模板不存在:./Application/Home/View/OnContact/Index.html 错误位置FILE: /home/huimingdedhpucixmaihndged5e/wwwroot/ThinkPHP123/Library/Think/View.class.php LINE: 110 TRACE#0 /home/huimingdedhpucixmaihndged5e/wwwroot/ThinkPHP123/Library/Think/View.class.php(…...
复杂的数据类型如何转成字符串!
1.首先,会调用 valueOf 方法,如果方法的返回值是一个基本数据类型,就返回这个值, 如果调用 valueOf 方法之后的返回值仍旧是一个复杂数据类型,就会调用该对象的 toString 方法, 如果 toString 方法调用之后…...
云原生构建 微服务、容器化与容器编排
第1章 何为云原生,云原生为何而生 SOA也就是面向服务的架构 软件架构的发展主要经历了集中式架构、分布式架构以及云原生架构这几代架构的发展。 微服务架构,其实是SOA的另外一种实现方式,属于SOA的子集。 在微服务架构下,系统…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
